We could use a bigger hammer and bail out on any constant
expression, but there's a regression test that appears to
validly do the transform (although it may not have been
intending to check that optimization).
Rather than relying on pointer type equality (which, for a change,
is silently incorrect with opaque pointers) check that the GEP
source element types match.
As noted in PR45210: https://bugs.llvm.org/show_bug.cgi?id=45210
...the bug is triggered as Eli say when sext(idx) * ElementSize overflows.
```
// assume that GV is an array of 4-byte elements
GEP = gep GV, 0, Idx // this is accessing Idx * 4
L = load GEP
ICI = icmp eq L, value
=>
ICI = icmp eq Idx, NewIdx
```
The foldCmpLoadFromIndexedGlobal function simplifies GEP+load operation to icmp.
And there is a problem because Idx * ElementSize can overflow.
Let's assume that the wanted value is at offset 0.
Then, there are actually four possible values for Idx to match offset 0: 0x00..00, 0x40..00, 0x80..00, 0xC0..00.
We should return true for all these values, but currently, the new icmp only returns true for 0x00..00.
This problem can be solved by masking off (trailing zeros of ElementSize) bits from Idx.
```
...
=>
Idx' = and Idx, 0x3F..FF
ICI = icmp eq Idx', NewIdx
```
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D99481
This reverts commit 4f2fd3818b.
The Linux kernel fails to build after this commit. See
https://reviews.llvm.org/D99481 for a reproducer.
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
As noted in PR45210: https://bugs.llvm.org/show_bug.cgi?id=45210
...the bug is triggered as Eli say when sext(idx) * ElementSize overflows.
```
// assume that GV is an array of 4-byte elements
GEP = gep GV, 0, Idx // this is accessing Idx * 4
L = load GEP
ICI = icmp eq L, value
=>
ICI = icmp eq Idx, NewIdx
```
The foldCmpLoadFromIndexedGlobal function simplifies GEP+load operation to icmp.
And there is a problem because Idx * ElementSize can overflow.
Let's assume that the wanted value is at offset 0.
Then, there are actually four possible values for Idx to match offset 0: 0x00..00, 0x40..00, 0x80..00, 0xC0..00.
We should return true for all these values, but currently, the new icmp only returns true for 0x00..00.
This problem can be solved by masking off (trailing zeros of ElementSize) bits from Idx.
```
...
=>
Idx' = and Idx, 0x3F..FF
ICI = icmp eq Idx', NewIdx
```
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D99481
This was reverted due to performance regressions in ARM benchmarks,
which have since been addressed by D101196 (SCEV analysis improvement)
and D101778 (CGP reverse transform).
-----
The single-use case is handled implicity by converting the icmp
into a mask check first. When comparing with zero in particular,
we don't need the one-use restriction, as we only produce a single
icmp.
https://alive2.llvm.org/ce/z/MSixcmhttps://alive2.llvm.org/ce/z/GwpG0M
This fixes https://llvm.org/PR48900 , but as seen in the
regression tests prevents some optimizations.
There are a few options to restore those (switch to min/max
intrinsics, add larger pattern matching for select with
dominating condition, improve CVP), but we need to prevent
the bug 1st.
This reverts commit 13ec913bdf.
This commit introduces new uses of the overflow checking intrinsics that
depend on implementations in compiler-rt, which Windows users generally
do not link against. I filed an issue (somewhere) to make clang
auto-link the builtins library to resolve this situation, but until that
happens, it isn't reasonable for the optimizer to introduce new link
time dependencies.
Currently, the InstCombineCompare is combining two add operations
into a single add operation which always has a nsw flag, without
checking the conditions to see if this flag should be present
according to the original two add operations or not.
This patch will change the InstCombineCompare to emit the nsw or
nuw only when these flags are allowed to be generated according to
the original add operations and remove the possibility of applying
wrong optimization with passes that will perform on the IR later
in the pipeline.
To confirm that the current results are buggy and the results after
proposed patch are the correct IR the following examples from Alive2
are attached; the same results can be seen in the case of nuw flag
and nsw is just used as an example. The following link shows that
the generated IR with current LLVM is a buggy IR when none of the
original add operations have nsw flag.
https://alive2.llvm.org/ce/z/WGaDrm
The following link proves that the generated IR after the patch in
the former case is the correct IR.
https://alive2.llvm.org/ce/z/wQ7G_e
Differential Revision: https://reviews.llvm.org/D100095
As discussed in:
https://llvm.org/PR49179
...this pattern shows up in library code.
There are several potential generalizations as noted,
but we need to be careful that we get FP special-values
right, and it's not clear how much variation we should
expect to see from this exact idiom.
This is a more basic pattern that we should handle before trying to solve:
https://llvm.org/PR48640
There might be a better way to think about this because the pre-condition
that I came up with (number of sign bits in the compare constant) misses a
potential transform for each of ugt and ult as commented on in the test file.
Tried to model this is in Alive:
https://rise4fun.com/Alive/juX1
...but I couldn't get the ComputeNumSignBits() pre-condition to work as
expected, so replaced with leading 0/1 preconditions instead.
Name: ugt
Pre: countLeadingZeros(C2) <= C1 && countLeadingOnes(C2) <= C1
%a = ashr %x, C1
%r = icmp ugt i8 %a, C2
=>
%r = icmp slt i8 %x, 0
Name: ult
Pre: countLeadingZeros(C2) <= C1 && countLeadingOnes(C2) <= C1
%a = ashr %x, C1
%r = icmp ult i4 %a, C2
=>
%r = icmp sgt i4 %x, -1
Also approximated in Alive2:
https://alive2.llvm.org/ce/z/u5hCczhttps://alive2.llvm.org/ce/z/__szVL
Differential Revision: https://reviews.llvm.org/D94014
Currently make_early_inc_range cannot be used with iterators with
operator* implementations that do not return a reference.
Most notably in the LLVM codebase, this means the User iterator ranges
cannot be used with make_early_inc_range, which slightly simplifies
iterating over ranges while elements are removed.
Instead of directly using BaseT::reference as return type of operator*,
this patch uses decltype to get the actual return type of the operator*
implementation in WrappedIteratorT.
This patch also updates a few places to use make use of
make_early_inc_range.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D93992
This patch
- Adds containsPoisonElement that checks existence of poison in constant vector elements,
- Renames containsUndefElement to containsUndefOrPoisonElement to clarify its behavior & updates its uses properly
With this patch, isGuaranteedNotToBeUndefOrPoison's tests w.r.t constant vectors are added because its analysis is improved.
Thanks!
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D94053
Feeding vector values to `InstCombiner::OptimizeOverflowCheck` produces a scalar boolean flag if it proves the overflow check can be eliminated.
This causes `InstCombiner::CreateOverflowTuple` to crash as it correctly expects a vector of i1 values instead.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D89628
Use isKnownXY comparators when one of the operands can be with
scalable vectors or getFixedSize() for all the other cases.
This patch also does bug fixes for getPrimitiveSizeInBits by using
getFixedSize() near the places with the TypeSize comparison.
Differential Revision: https://reviews.llvm.org/D89703
We know V is a IntToPtrInst or PtrToIntInst type so we know its a CastInst - so use cast<> directly.
Prevents clang static analyzer warning that we could deference a null pointer.
We cannot iterate on scalable vector, the number of elements is unknown at compile-time.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D87918