Add support to the AArch64 IAS for the `.arch` directive. This allows the
assembly input to use architectural functionality in part of a file. This is
used in existing code like BoringSSL.
Resolves PR26016!
llvm-svn: 272241
Teach AArch64RegisterBankInfo that G_OR can be mapped on either GPR or
FPR for 64-bit or 32-bit values.
Add test cases demonstrating how this information is used to coalesce a
computation on a single register bank.
llvm-svn: 272170
The MSR instructions can write to the CPSR, but we did not model this
fact, so we could emit them in the middle of IT blocks, changing the
condition flags for later instructions in the block.
The tests use two calls to llvm.write_register.i32 because it is valid
to use these instructions at the end of an IT block, which if conversion
does do in some cases. With two calls, the first clobbers the flags, so
a branch has to be used to make the second one conditional.
Differential Revision: http://reviews.llvm.org/D21139
llvm-svn: 272154
Also, switch to using functions from LiveIntervalAnalysis to update
live intervals, instead of performing the updates manually.
Re-committing r272045.
llvm-svn: 272135
As suggested by clang-tidy's performance-unnecessary-copy-initialization.
This can easily hit lifetime issues, so I audited every change and ran the
tests under asan, which came back clean.
llvm-svn: 272126
The cost of a copy may be different based on how many bits we have to
copy around. E.g., a 8-bit copy may be different than a 32-bit copy.
llvm-svn: 272084
Summary:
The presence of this attribute indicates that VGPR outputs should be computed
in whole quad mode. This will be used by Mesa for prolog pixel shaders, so
that derivatives can be taken of shader inputs computed by the prolog, fixing
a bug.
The generated code could certainly be improved: if a prolog pixel shader is
used (which isn't common in modern OpenGL - they're used for gl_Color, polygon
stipples, and forcing per-sample interpolation), Mesa will use this attribute
unconditionally, because it has to be conservative. So WQM may be used in the
prolog when it isn't really needed, and furthermore a silly back-and-forth
switch is likely to happen at the boundary between prolog and main shader
parts.
Fixing this is a bit involved: we'd first have to add a mechanism by which
LLVM writes the WQM-related input requirements to the main shader part binary,
and then Mesa specializes the prolog part accordingly. At that point, we may
as well just compile a monolithic shader...
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=95130
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D20839
llvm-svn: 272063
Summary:
This patch is adding support for the MSVC buffer security check implementation
The buffer security check is turned on with the '/GS' compiler switch.
* https://msdn.microsoft.com/en-us/library/8dbf701c.aspx
* To be added to clang here: http://reviews.llvm.org/D20347
Some overview of buffer security check feature and implementation:
* https://msdn.microsoft.com/en-us/library/aa290051(VS.71).aspx
* http://www.ksyash.com/2011/01/buffer-overflow-protection-3/
* http://blog.osom.info/2012/02/understanding-vs-c-compilers-buffer.html
For the following example:
```
int example(int offset, int index) {
char buffer[10];
memset(buffer, 0xCC, index);
return buffer[index];
}
```
The MSVC compiler is adding these instructions to perform stack integrity check:
```
push ebp
mov ebp,esp
sub esp,50h
[1] mov eax,dword ptr [__security_cookie (01068024h)]
[2] xor eax,ebp
[3] mov dword ptr [ebp-4],eax
push ebx
push esi
push edi
mov eax,dword ptr [index]
push eax
push 0CCh
lea ecx,[buffer]
push ecx
call _memset (010610B9h)
add esp,0Ch
mov eax,dword ptr [index]
movsx eax,byte ptr buffer[eax]
pop edi
pop esi
pop ebx
[4] mov ecx,dword ptr [ebp-4]
[5] xor ecx,ebp
[6] call @__security_check_cookie@4 (01061276h)
mov esp,ebp
pop ebp
ret
```
The instrumentation above is:
* [1] is loading the global security canary,
* [3] is storing the local computed ([2]) canary to the guard slot,
* [4] is loading the guard slot and ([5]) re-compute the global canary,
* [6] is validating the resulting canary with the '__security_check_cookie' and performs error handling.
Overview of the current stack-protection implementation:
* lib/CodeGen/StackProtector.cpp
* There is a default stack-protection implementation applied on intermediate representation.
* The target can overload 'getIRStackGuard' method if it has a standard location for the stack protector cookie.
* An intrinsic 'Intrinsic::stackprotector' is added to the prologue. It will be expanded by the instruction selection pass (DAG or Fast).
* Basic Blocks are added to every instrumented function to receive the code for handling stack guard validation and errors handling.
* Guard manipulation and comparison are added directly to the intermediate representation.
* lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
* lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
* There is an implementation that adds instrumentation during instruction selection (for better handling of sibbling calls).
* see long comment above 'class StackProtectorDescriptor' declaration.
* The target needs to override 'getSDagStackGuard' to activate SDAG stack protection generation. (note: getIRStackGuard MUST be nullptr).
* 'getSDagStackGuard' returns the appropriate stack guard (security cookie)
* The code is generated by 'SelectionDAGBuilder.cpp' and 'SelectionDAGISel.cpp'.
* include/llvm/Target/TargetLowering.h
* Contains function to retrieve the default Guard 'Value'; should be overriden by each target to select which implementation is used and provide Guard 'Value'.
* lib/Target/X86/X86ISelLowering.cpp
* Contains the x86 specialisation; Guard 'Value' used by the SelectionDAG algorithm.
Function-based Instrumentation:
* The MSVC doesn't inline the stack guard comparison in every function. Instead, a call to '__security_check_cookie' is added to the epilogue before every return instructions.
* To support function-based instrumentation, this patch is
* adding a function to get the function-based check (llvm 'Value', see include/llvm/Target/TargetLowering.h),
* If provided, the stack protection instrumentation won't be inlined and a call to that function will be added to the prologue.
* modifying (SelectionDAGISel.cpp) do avoid producing basic blocks used for inline instrumentation,
* generating the function-based instrumentation during the ISEL pass (SelectionDAGBuilder.cpp),
* if FastISEL (not SelectionDAG), using the fallback which rely on the same function-based implemented over intermediate representation (StackProtector.cpp).
Modifications
* adding support for MSVC (lib/Target/X86/X86ISelLowering.cpp)
* adding support function-based instrumentation (lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp, .h)
Results
* IR generated instrumentation:
```
clang-cl /GS test.cc /Od /c -mllvm -print-isel-input
```
```
*** Final LLVM Code input to ISel ***
; Function Attrs: nounwind sspstrong
define i32 @"\01?example@@YAHHH@Z"(i32 %offset, i32 %index) #0 {
entry:
%StackGuardSlot = alloca i8* <<<-- Allocated guard slot
%0 = call i8* @llvm.stackguard() <<<-- Loading Stack Guard value
call void @llvm.stackprotector(i8* %0, i8** %StackGuardSlot) <<<-- Prologue intrinsic call (store to Guard slot)
%index.addr = alloca i32, align 4
%offset.addr = alloca i32, align 4
%buffer = alloca [10 x i8], align 1
store i32 %index, i32* %index.addr, align 4
store i32 %offset, i32* %offset.addr, align 4
%arraydecay = getelementptr inbounds [10 x i8], [10 x i8]* %buffer, i32 0, i32 0
%1 = load i32, i32* %index.addr, align 4
call void @llvm.memset.p0i8.i32(i8* %arraydecay, i8 -52, i32 %1, i32 1, i1 false)
%2 = load i32, i32* %index.addr, align 4
%arrayidx = getelementptr inbounds [10 x i8], [10 x i8]* %buffer, i32 0, i32 %2
%3 = load i8, i8* %arrayidx, align 1
%conv = sext i8 %3 to i32
%4 = load volatile i8*, i8** %StackGuardSlot <<<-- Loading Guard slot
call void @__security_check_cookie(i8* %4) <<<-- Epilogue function-based check
ret i32 %conv
}
```
* SelectionDAG generated instrumentation:
```
clang-cl /GS test.cc /O1 /c /FA
```
```
"?example@@YAHHH@Z": # @"\01?example@@YAHHH@Z"
# BB#0: # %entry
pushl %esi
subl $16, %esp
movl ___security_cookie, %eax <<<-- Loading Stack Guard value
movl 28(%esp), %esi
movl %eax, 12(%esp) <<<-- Store to Guard slot
leal 2(%esp), %eax
pushl %esi
pushl $204
pushl %eax
calll _memset
addl $12, %esp
movsbl 2(%esp,%esi), %esi
movl 12(%esp), %ecx <<<-- Loading Guard slot
calll @__security_check_cookie@4 <<<-- Epilogue function-based check
movl %esi, %eax
addl $16, %esp
popl %esi
retl
```
Reviewers: kcc, pcc, eugenis, rnk
Subscribers: majnemer, llvm-commits, hans, thakis, rnk
Differential Revision: http://reviews.llvm.org/D20346
llvm-svn: 272053
These instructions end in "S" but are not flag-setting, so they need including
in the list of special cases in the assembly parser.
Differential Revision: http://reviews.llvm.org/D21077
llvm-svn: 272015
Currently the only way to use the (V)MOVNTDQA nontemporal vector loads instructions is through the int_x86_sse41_movntdqa style builtins.
This patch adds support for lowering nontemporal loads from general IR, allowing us to remove the movntdqa builtins in a future patch.
We currently still fold nontemporal loads into suitable instructions, we should probably look at removing this (and nontemporal stores as well) or at least make the target's folding implementation aware that its dealing with a nontemporal memory transaction.
There is also an issue that VMOVNTDQA only acts on 128-bit vectors on pre-AVX2 hardware - so currently a normal ymm load is still used on AVX1 targets.
Differential Review: http://reviews.llvm.org/D20965
llvm-svn: 272011
Currently the only way to use the (V)MOVNTDQA nontemporal vector loads instructions is through the int_x86_sse41_movntdqa style builtins.
This patch adds support for lowering nontemporal loads from general IR, allowing us to remove the movntdqa builtins in a future patch.
We currently still fold nontemporal loads into suitable instructions, we should probably look at removing this (and nontemporal stores as well) or at least make the target's folding implementation aware that its dealing with a nontemporal memory transaction.
There is also an issue that VMOVNTDQA only acts on 128-bit vectors on pre-AVX2 hardware - so currently a normal ymm load is still used on AVX1 targets.
Differential Review: http://reviews.llvm.org/D20965
llvm-svn: 272010
Using an LLVM IR aggregate return value type containing three
or more integer values causes an abort in the fast isel pass.
This patch adds two more registers to RetCC_PPC64_ELF_FIS to
allow returning up to four integers with fast isel, just the
same as is currently supported with regular isel (RetCC_PPC).
This is needed for Swift and (possibly) other non-clang frontends.
Fixes PR26190.
llvm-svn: 272005
We currently only combine to blend+zero if the target value type has 8 elements or less, but this was missing a lot of cases where the combined mask had been widened.
This change makes it so we use the combined mask to determine the blend value type, allowing us to catch more widened cases.
llvm-svn: 272003
A Thumb-2 post-indexed LDR instruction such as:
ldr.w r0, [r1], #4
Can be rewritten as:
ldm.n r1!, {r0}
LDMs can be more expensive than LDRs on some cores, so this has been enabled only in minsize mode.
llvm-svn: 272002
If we have an LDM that uses only low registers and doesn't write to its base register:
ldm.w r0, {r1, r2, r3}
And that base register is dead after the LDM, then we can convert it to writeback form and use a narrow encoding:
ldm.n r0!, {r1, r2, r3}
Obviously, this introduces a new register write and so can cause WAW hazards, so I've enabled it only in minsize mode. This is a code size trick that ARM Compiler 5 ("armcc") does that we don't.
llvm-svn: 272000
The Thumb2 conditional branch B<cond>.W has a different encoding (T3)
to the unconditional branch B.W (T4) as it needs to record <cond>.
As the encoding is different the B<cond>.W is given a different
relocation type.
ELF for the ARM Architecture 4.6.1.6 (Table-13) states that
R_ARM_THM_JUMP19 should be used for B<cond>.W. At present the
MC layer is using the R_ARM_THM_JUMP24 from B.W.
This change makes B<cond>.W use R_ARM_THM_JUMP19 and alters the
existing test that checks for R_ARM_THM_JUMP24 to expect
R_ARM_THM_JUMP19.
llvm-svn: 271997
TLS access requires an offset from the TLS index. The index itself is the
section-relative distance of the symbol. For ARM, the relevant relocation
(IMAGE_REL_ARM_SECREL) is applied as a constant. This means that the value may
not be an immediate and must be lowered into a constant pool. This offset will
not be base relocated. We were previously emitting the actual address of the
symbol which would be base relocated and would therefore be the vaue offset by
the ImageBase + TLS Offset.
llvm-svn: 271974
Another step for unification llvm assembler/disassembler with sp3.
Besides, CodeGen output is a bit improved, thus changes in CodeGen tests.
Assembler/Disassembler tests updated/added.
Differential Revision: http://reviews.llvm.org/D20796
llvm-svn: 271900
Windows itanium is nearly identical to windows-msvc (MS ABI for C, itanium for
C++). Enable the TLS support for the target similar to the MSVC model.
llvm-svn: 271797
The AVX2 v16i16 shift lowering works by unpacking to 2 x v8i32, performing the shift and then truncating the result.
The unpacking is used to place the values in the upper 16-bits so that we can correctly sign-extend for SRA shifts. Unfortunately we weren't ensuring that the lower 16-bits were zero to ensure that SHL correctly shifts in zero bits.
llvm-svn: 271796
Under emscripten, C code can take the address of a function implemented
in Javascript (which is exposed via an import in wasm). Because imports
do not have linear memory address in wasm, we need to generate a thunk
to be the target of the indirect call; it call the import directly.
To make this possible, LLVM needs to emit the type signatures for these
functions, because they may not be called directly or referred to other
than where the address is taken.
This uses s new .s directive (.functype) which specifies the signature.
Differential Revision: http://reviews.llvm.org/D20891
Re-apply r271599 but instead of bailing with an error when a declared
function has multiple returns, replace it with a pointer argument. Also
add the test case I forgot to 'git add' last time around.
llvm-svn: 271703
We were assuming all SBFX-like operations would have the shl/asr form, but often
when the field being extracted is an i8 or i16, we end up with a
SIGN_EXTEND_INREG acting on a shift instead.
This is a port of r213754 from ARM to AArch64.
llvm-svn: 271677
new instruction to ARM and AArch64 targets and several system registers.
Patch by: Roger Ferrer Ibanez and Oliver Stannard
Differential Revision: http://reviews.llvm.org/D20282
llvm-svn: 271670
forces having special checks in ArmInstPrinter::printInstruction. This
patch addresses this issue.
Not all special checks could be removed: either they involve elaborated
conditions under which the alias is emitted (e.g. ldm/stm on sp may be
pop/push but only if the number of registers is >= 2) or the number
of registers is multivalued (like happens again with ldm/stm) and they
do not match the InstAlias pattern which assumes single-valued operands
in the pattern.
Patch by: Roger Ferrer Ibanez
Differential Revision: http://reviews.llvm.org/D20237
llvm-svn: 271667
Summary:
There are no tests*, no EABI buildbots, and simple test cases do not work.
* There is a single MIPS16 test using a mips*-gnueabi triple but this test
doesn't test EABI and the triple doesn't cause EABI to be used.
Reviewers: sdardis
Subscribers: tberghammer, danalbert, srhines, dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D20906
llvm-svn: 271658
Summary:
Added custom converters for SDWA instruction to support optional operands and modifiers.
Support for _dpp and _sdwa suffixes that allows to force DPP or SDWA encoding for instructions.
Reviewers: tstellarAMD, vpykhtin, artem.tamazov
Subscribers: arsenm, kzhuravl
Differential Revision: http://reviews.llvm.org/D20625
llvm-svn: 271655
subclasses. These are not passes proper. We don't support registering
them, they can't be constructed with default arguments, and the ID is
actually in a base class.
Only these two targets even had any boiler plate to try to do this, and
it had to be munged out of the INITIALIZE_PASS macros to work. What's
worse, the boiler plate has rotted and the "name" of the pass is
actually the description string now!!! =/ All of this is completely
unnecessary. No other target bothers, and nothing breaks if you don't
initialize them because CodeGen has an entirely separate initialization
path that is somewhat more durable than relying on the implicit
initialization the way the 'opt' tool does for registered passes.
llvm-svn: 271650
Summary:
N32 support will follow in a later patch since the symbol version of 'la'
incorrectly believes N32 to have 64-bit pointers and rejects it early.
This fixes the three incorrectly expanded 'la' macros found in bionic.
Reviewers: sdardis
Subscribers: dsanders, llvm-commits, sdardis
Differential Revision: http://reviews.llvm.org/D20820
llvm-svn: 271644
This patch begins adding support for lowering to the XOP VPERMIL2PD/VPERMIL2PS shuffle instructions - adding the X86ISD::VPERMIL2 opcode and cleaning up the usage.
The internal llvm intrinsics were assuming the shuffle mask operand was the same type as the float/double input operands (I guess to simplify the intrinsic definitions in X86InstrXOP.td to a single value type). These needed changing to integer types (matching the clang builtin and the AMD intrinsics definitions), an auto upgrade path is added to convert old calls.
Mask decoding/target shuffle support will be added in future patches.
Differential Revision: http://reviews.llvm.org/D20049
llvm-svn: 271633
This reverts r271599, it broke the integration tests.
More places than I expected had nontrival return types in imports, or
else the check was wrong.
llvm-svn: 271606
Under emscripten, C code can take the address of a function implemented
in Javascript (which is exposed via an import in wasm). Because imports
do not have linear memory address in wasm, we need to generate a thunk
to be the target of the indirect call; it call the import directly.
To make this possible, LLVM needs to emit the type signatures for these
functions, because they may not be called directly or referred to other
than where the address is taken.
This uses s new .s directive (.functype) which specifies the signature.
Differential Revision: http://reviews.llvm.org/D20891
llvm-svn: 271599
There are a lot of different kinds of loads to test for,
and these were scattered around inconsistently with
some redundancy. Try to comprehensively test all loads
in a consistent way.
llvm-svn: 271571
If the processor name failed to parse for amdgcn,
the resulting output would have R600 ISA in it.
If the processor name was missing or invalid for R600,
the wavefront size would not be set and there would be
crashes from missing itinerary data.
Fixes crashes in future commit caused by dividing by the unset/0
wavefront size.
llvm-svn: 271561
We've been pretending that segments are i8imm since the initial
support (r68645), predating the addition of the SEGMENT_REG class
(r81895). That happens to works, but is wrong, and inconsistent
with how we print (e.g., X86ATTInstPrinter::printMemReference)
and parse them (e.g., X86Operand::addMemOperands).
This change shouldn't affect any tool users, but is visible to
library users or out-of-tree tablegen backends: this causes
MCOperandInfo for the segment op to have an RC instead of "unknown",
and TII::getRegClass to actually return something. As the registers
are reserved and no vregs of the class ever created, that shouldn't
change anything.
No test change; no suspicious getRegClass() in X86 and CodeGen.
llvm-svn: 271559
Testing for specific CPUs has a number of problems, better use subtarget
features:
- When some tweak is added for a specific CPU it is often desirable for
the next version of that CPU as well, yet we often forget to add it.
- It is hard to keep track of checks scattered around the target code;
Declaring all target specifics together with the CPU in the tablegen
file is a clear representation.
- Subtarget features can be tweaked from the command line.
To discourage people from using CPU checks in the future I removed the
isCortexXX(), isCyclone(), ... functions. I added an getProcFamily()
function for exceptional circumstances but made it clear in the comment
that usage is discouraged.
Reformat feature list in AArch64.td to have 1 feature per line in
alphabetical order to simplify merging and sorting for out of tree
tweaks.
No functional change intended.
Differential Revision: http://reviews.llvm.org/D20762
llvm-svn: 271555
Summary:
In PR29973 Sanjay Patel reported an assertion failure when a certain
loop was optimized, for a target without SSE2 support. It turned out
this was because of the AVG pattern detection introduced in rL253952.
Prevent the assertion failure by bailing out early in
`detectAVGPattern()`, if the target does not support SSE2.
Also add a minimized test case.
Reviewers: congh, eli.friedman, spatel
Subscribers: emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D20905
llvm-svn: 271548
Summary:
If the target requests it, use emptry spaces in the fixed and
callee-save stack area to allocate local stack objects.
AArch64: Change last callee-save reg stack object alignment instead of
size to leave a gap to take advantage of above change.
Reviewers: t.p.northover, qcolombet, MatzeB
Subscribers: rengolin, mcrosier, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D20220
llvm-svn: 271527
Handle it locally instead of having the target-independent pass deal
with it. The generic pass does not preserve implicit uses, which may
be necessary.
llvm-svn: 271520
This patch removes the llvm intrinsics (V)CVTTPS2DQ and VCVTTPD2DQ truncation (round to zero) conversions and auto-upgrades to FP_TO_SINT calls instead.
Note: I looked at updating CVTTPD2DQ as well but this still requires a lot more work to correctly lower.
Differential Revision: http://reviews.llvm.org/D20860
llvm-svn: 271510
I'm not sure why this was missing for so long.
This also exposed that we were picking floating point 256-bit VMOVNTPS for some integer types in normal isel for AVX1 even though VMOVNTDQ is available. In practice it doesn't matter due to the execution dependency fix pass, but it required extra isel patterns. Fixing that in a follow up commit.
llvm-svn: 271481
Fix PR27943 "Bad machine code: Using an undefined physical register".
SUBFC8 implicitly defines the CR0 register, but this was omitted in
the instruction definition.
Patch by Jameson Nash <jameson@juliacomputing.com>
Reviewers: hfinkel
Differential Revision: http://reviews.llvm.org/D20802
llvm-svn: 271425
This adds an additional matcher to select UBFX(..) from SRL(AND(..)) in
ARMISelDAGToDAG to help with code size.
Patch by David Green.
Differential Revision: http://reviews.llvm.org/D20667
llvm-svn: 271384
Physregs have no associated register class, do not attempt to modify it
in Thumb2InstrInfo::storeRegToStackSlot()/loadFromStackSlot().
llvm-svn: 271339
A constant pool holding the address of a variable in equivalent to
a got entry. It produces exactly the same instruction sequence as a
got use and unlike a got use this is not uniqued by the linker.
llvm-svn: 271311
Enforce compact branch register restrictions such as the use of the zero
register, both operands being the same register. Emit clear error in such
cases as the issue is subtle.
For bovc and bnvc, silently fixup such cases when emitting objects directly,
like LLVM started doing in rL269899.
Reviewers: vkalintiris, dsanders
Differential Review: http://reviews.llvm.org/D20475
llvm-svn: 271301
Introduced in r271244, this is probably undefined behaviour and asserts when
compiled with Visual C++ debug mode.
On further note, the loop is quadratic with regard to the number of successors
since removeSuccessor is linear and could probably be modified to linear time.
llvm-svn: 271278
Added support to map intrinsics
__builtin_arm_{ldc,ldcl,ldc2,ldc2l,stc,stcl,stc2,stc2l}
to their ARM instructions.
Differential Revision: http://reviews.llvm.org/D20564
llvm-svn: 271271
beqc and bnec cannot have $rs == $rt. Inhibit compact branch creation
if that would occur.
Reviewers: vkalintiris, dsanders
Differential Revision: http://reviews.llvm.org/D20624
llvm-svn: 271260
This adds support to the backed to actually support SjLj EH as an exception
model. This is *NOT* the default model, and requires explicitly opting into it
from the frontend. GCC supports this model and for MinGW can still be enabled
via the `--using-sjlj-exceptions` options.
Addresses PR27749!
llvm-svn: 271244
The exit-on-error flag is necessary to avoid some assertions/unreachables. We
can get past them by creating a few dummy nodes.
Fixes PR27768, PR27769.
Differential Revision: http://reviews.llvm.org/D20726
llvm-svn: 271200
This patch removes the llvm intrinsics VPMOVSX and (V)PMOVZX sign/zero extension intrinsics and auto-upgrades to SEXT/ZEXT calls instead. We already did this for SSE41 PMOVSX sometime ago so much of that implementation can be reused.
Reapplied now that the the companion patch (D20684) removes/auto-upgrade the clang intrinsics has been committed.
Differential Revision: http://reviews.llvm.org/D20686
llvm-svn: 271131
We were producing R_X86_64_GOTPCRELX for invalid instructions and
sometimes producing R_X86_64_GOTPCRELX instead of
R_X86_64_REX_GOTPCRELX.
llvm-svn: 271118
It would be better to check the valid/expected size of the immediate operand, but this is
generally better than what we print right now.
Differential Revision: http://reviews.llvm.org/D20385
llvm-svn: 271114
Composing subreg_loreg with subreg_oveflow leads to strange results with
lane masks for register classes with subreg_loreg. In particular, dead
lane detection generates incorrect code.
llvm-svn: 271087
Remove broken patterns matching it. This was matching the
unsafe math pattern and expanding the fix for the buggy instruction
from the pattern. The problems are also on CI. Remove the workarounds
and only use fract with unsafe math or from the intrinsic.
llvm-svn: 271078
The isMemWithSimmOffset predicate rejects relocations which is incorrect
behaviour. Linkers and other tools should handle|warn|error when the
field overflows.
Reviewers: dsanders, vkalintiris
Differential Revision: http://reviews.llvm.org/D20727
llvm-svn: 270995
Register numbers may be specified as assembly-time expressions.
This feature can be useful in macros and alike. However, expressions
are supported within sqare braces only.
Sqare braces were initially intended to support specifying of multiple
(pairs/quads...) registers. Syntax like v[8:8] which specifies single register
is also supported. That allows expressions but looks a bit unnatural.
This change supports syntax REG[EXPR].
Tests added.
Differential Revision: http://reviews.llvm.org/D20588
llvm-svn: 270990
This patch removes the llvm intrinsics VPMOVSX and (V)PMOVZX sign/zero extension intrinsics and auto-upgrades to SEXT/ZEXT calls instead. We already did this for SSE41 PMOVSX sometime ago so much of that implementation can be reused.
A companion patch (D20684) removes/auto-upgrade the clang intrinsics.
Differential Revision: http://reviews.llvm.org/D20686
llvm-svn: 270973
The aggressive anti-dependency breaker can rename the restored callee-
saved registers. To prevent this, mark these registers are live on all
paths to the return/tail-call instructions, and add implicit use operands
for them to these instructions.
llvm-svn: 270898
Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the high
16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32) to
(rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
test_rev_w_srl16: test_rev_w_srl16:
and w8, w0, #0xffff and w8, w0, #0xffff
rev w8, w8 ---> rev16 w0, w8
lsr w0, w8, #16
test_rev_x_srl32: test_rev_x_srl32:
rev x8, x8 ---> rev32 x0, x8
lsr x0, x8, #32
llvm-svn: 270896
NVVMIntrRange adds !range metadata to calls of NVVM intrinsics
that return values within known limited range.
This allows LLVM to generate optimal code for indexing arrays
based on tid/ctaid which is a frequently used pattern in CUDA code.
Differential Revision: http://reviews.llvm.org/D20644
llvm-svn: 270872
Hwreg(...) syntax implementation unified with sendmsg(...).
Common strings moved to Utils
MathExtras.h functionality utilized.
Added missing build dependency in Disassembler.
Differential Revision: http://reviews.llvm.org/D20381
llvm-svn: 270871
Most often as not this is what it started out as, the extraction is zero-cost on AVX and the PMOVZX/PMOVSX folding logic is based around 128-bit loads.
llvm-svn: 270858
The exit-on-error flag is needed to avoid an assert where
llvm::SelectionDAGISel::LowerArguments doesn't create enough arguments. Fill up
with zeroes to reach the right number of args.
Fixes PR27767.
Differential Revision: http://reviews.llvm.org/D20571
llvm-svn: 270855
If and only if the value being inserted sets only known zero bits.
This combine transforms things like
and w8, w0, #0xfffffff0
movz w9, #5
orr w0, w8, w9
into
movz w8, #5
bfxil w0, w8, #0, #4
The combine is tuned to make sure we always reduce the number of instructions.
We avoid churning code for what is expected to be performance neutral changes
(e.g., converted AND+OR to OR+BFI).
Differential Revision: http://reviews.llvm.org/D20387
llvm-svn: 270846
f32 vectors would use a sequence of BFI instructions instead
of unrolled cmp + select. This was better in the case of a VALU
select with SGPR inputs, but we don't have a way of dealing with that
in the DAG.
llvm-svn: 270731
By making pointer extraction from a vector more expensive in the cost model,
we avoid the vectorization of a loop that is very likely to be memory-bound:
https://llvm.org/bugs/show_bug.cgi?id=27826
There are still bugs related to this, so we may need a more general solution
to avoid vectorizing obviously memory-bound loops when we don't have HW gather
support.
Differential Revision: http://reviews.llvm.org/D20601
llvm-svn: 270729
As noted in the review, there are still problems, so this doesn't the bug completely.
Differential Revision: http://reviews.llvm.org/D20529
llvm-svn: 270718
Followup to D20528 clang patch, this removes the (V)CVTDQ2PD(Y) and (V)CVTPS2PD(Y) llvm intrinsics and auto-upgrades to sitofp/fpext instead.
Differential Revision: http://reviews.llvm.org/D20568
llvm-svn: 270678
[AMDGPU] emitPrologue looks for an unused unallocated SGPR that is not
the scratch descriptor. Continue search if unused register found fails
other requirements.
Reviewers: arsenm, tstellarAMD, nhaehnle
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D20526
llvm-svn: 270646
Instead of this:
i32.const $push10=, __stack_pointer
i32.load $push11=, 0($pop10)
Emit this:
i32.const $push10=, 0
i32.load $push11=, __stack_pointer($pop10)
It's not currently clear which is better, though there's a chance the second
form may be better at overall compression. We can revisit this when we have
more data; for now it makes sense to make PEI consistent with isel.
Differential Revision: http://reviews.llvm.org/D20411
llvm-svn: 270635
Summary:
Change process of parsing of optional operands. All optional operands use same parsing method - parseOptionalOperand().
No default values are added to OperandsVector.
Get rid of WORKAROUND_USE_DUMMY_OPERANDS_INSTEAD_MUTIPLE_DEFAULT_OPERANDS.
Reviewers: tstellarAMD, vpykhtin, artem.tamazov, nhaustov
Subscribers: arsenm, kzhuravl
Differential Revision: http://reviews.llvm.org/D20527
llvm-svn: 270556
Patch by Nitesh Jain.
Summary: The type of Imm in MipsDisassembler.cpp was incorrect since SignExtend64 return int64_t type.As per the MIPSr6 doc ,the offset is added to the address of the instruction following the branch (not the branch itself), to form a PC-relative effective target address hence “4” is added to the offset. The offset of some test case are update to reflect the changes due to “ + 4 ” offset and new test case for negative offset are added.
Reviewers: dsanders, vkalintiris
Differential Revision: http://reviews.llvm.org/D17540
llvm-svn: 270542
They were accidentally using the 32-bit load/store instruction for
8/16-bit operations, due to incorrect patterns
(8/16-bit cmpxchg and atomicrmw will be fixed in subsequent changes)
llvm-svn: 270486
Use the more specific LiveInterval::removeSegment instead of
LiveInterval::shrinkToUses when we know the specific range that's
being removed.
llvm-svn: 270463
The exit-on-error flag on the many_args1.ll test is needed to avoid an
unreachable in BPFTargetLowering::LowerCall. We can also avoid it by ignoring
any superfluous arguments to the call (i.e. any arguments after the first 5).
Fixes PR27766.
Differential Revision: http://reviews.llvm.org/D20471
v2 of r270419
llvm-svn: 270440
This patch reverts r270419 because it broke a lot of buildbots,
mostly Windows. We'd like help in investigating the issues, but
for now, it should stay out.
llvm-svn: 270433
The exit-on-error flag on the many_args1.ll test is needed to avoid an
unreachable in BPFTargetLowering::LowerCall. We can also avoid it by ignoring
any superfluous arguments to the call (i.e. any arguments after the first 5).
Fixes PR27766
llvm-svn: 270419
This code should have been with the previous check-in (r270417) and prevents the DelaySlotFiller pass being utilized in functions where the erratum fix has been applied as this will break the run-time code.
llvm-svn: 270418
Due to an erratum in some versions of LEON, we must insert a NOP after any LD or LDF instruction to ensure the processor has time to load the value correctly before using it. This pass will implement that erratum fix.
The code will have no effect for other Sparc, but non-LEON processors.
Differential Review: http://reviews.llvm.org/D20353
llvm-svn: 270417
This isn't the complete fix, but it handles the trivial examples of duplicate vzero* ops in PR27823:
https://llvm.org/bugs/show_bug.cgi?id=27823
...and amusingly, the bogus cases already exist as regression tests, so let's take this baby step.
We'll need to do more in the general case where there's legitimate AVX usage in the function + there's
already a vzero in the code.
Differential Revision: http://reviews.llvm.org/D20477
llvm-svn: 270378
Allocating larger register classes first should give better allocation
results (and more importantly for myself, make the lit tests more stable
with respect to scheduler changes).
Patch by Matthias Braun
llvm-svn: 270312
The current SGPR spilling test does not stress this
because it is using s_buffer_load instructions to
increase SGPR pressure and spill, but their output
operands have the same SReg_32_XM0 constraint. This fixes
an error when the SReg_32 output from most instructions
is spilled.
llvm-svn: 270301
This saves a small amount of code size, and is a first small step toward
passing values on the stack across block boundaries.
Differential Review: http://reviews.llvm.org/D20450
llvm-svn: 270294
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 270283
Summary:
As this optimization converts two loads into one load with two shift instructions,
it could potentially hurt performance if a loop is arithmetic operation intensive.
Reviewers: t.p.northover, mcrosier, jmolloy
Subscribers: evandro, jmolloy, aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20172
llvm-svn: 270251
We performed a number of memory allocations each time getTTI was called,
remove them by using SmallString.
No functionality change intended.
llvm-svn: 270246
This patch is a first step towards a more extendible method of matching combined target shuffle masks.
Initially this just pulls out the existing basic mask matches and adds support for some 256/512 bit equivalents. Future patterns will require a number of features to be added but I wanted to keep this patch simple.
I hope we can avoid duplication between shuffle lowering and combining and share more complex pattern match functions in future commits.
Differential Revision: http://reviews.llvm.org/D19198
llvm-svn: 270230
This refactors the logic in X86 to avoid code duplication. It also
splits it in two steps: it first decides if a symbol is local to the DSO
and then uses that information to decide how to access it.
The first part is implemented by shouldAssumeDSOLocal. It is not in any
way specific to X86. In a followup patch I intend to move it to
somewhere common and reused it in other backends.
llvm-svn: 270209
Since the calls don't return, the instruction afterwards will never run,
and is just taking up unnecessary space in the binary.
Differential Revision: http://reviews.llvm.org/D20406
llvm-svn: 270109
Mask0Imm and ~Mask1Imm must be equivalent and one of the MaskImms is a shifted
mask (e.g., 0x000ffff0). Both 'and's must have a single use.
This changes code like:
and w8, w0, #0xffff000f
and w9, w1, #0x0000fff0
orr w0, w9, w8
into
lsr w8, w1, #4
bfi w0, w8, #4, #12
llvm-svn: 270063
Fixes for MUBUF_Atomic instructions to make operand list valid:
- For RTN insns, make a copy of $vdata_in operand as $vdata.
- Do not add operand for GLC, it is hardcoded and comes as a token.
Workaround to avoid adding multiple default optional operands.
Tests added.
Differential Revision: http://reviews.llvm.org/D20257
llvm-svn: 270049
Enable "Remove Redundant LEAs" part of the LEA optimization pass for -O2.
This gives 6.4% performance improve on Broadwell on nnet benchmark from Coremark-pro.
There is no significant effect on other benchmarks (Geekbench, Spec2000, Spec2006).
Differential Revision: http://reviews.llvm.org/D19659
llvm-svn: 270036
Having an enum member named Default is quite confusing: Is it distinct
from the others?
This patch removes that member and instead uses Optional<Reloc> in
places where we have a user input that still hasn't been maped to the
default value, which is now clear has no be one of the remaining 3
options.
llvm-svn: 269988
isReturn() was returning different values with and without -g which led to
different code being generated. Change isFlagSettingInstruction to query
an instruction's effect on SR instead.
llvm-svn: 269986
Use signed division otherwise all back jumps fail the check
Fixes regression introduced in r269951
Differential Revision: http://reviews.llvm.org/D20380
llvm-svn: 269972
with an additional fix to make RegAllocFast ignore undef physreg uses. It would
previously get confused about the "push %eax" instruction's use of eax. That
method for adjusting the stack pointer is used in X86FrameLowering::emitSPUpdate
as well, but since that runs after register-allocation, we didn't run into the
RegAllocFast issue before.
llvm-svn: 269949
Use register class that does not include them when looking
for unallocated registers.
This is hit by the udiv v8i64 test in the opencl integer
conformance test, and takes a few seconds to compile in
a debug build so no test included.
llvm-svn: 269938
Don't expand divisions by constants if it would require multiple instructions.
The current assumption is that engines will perform the desired optimizations.
llvm-svn: 269930
Summary:
The ordering of registers in BinaryRRF instructions are wrong, and
affects the copysign instruction (CPSDR). This results in the wrong
magnitude and sign being set.
Author: zhanjunl
Reviewers: kbarton, uweigand
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20308
llvm-svn: 269922
Summary:
MONITORX/MWAITX instructions provide similar capability to the MONITOR/MWAIT
pair while adding a timer function, such that another termination of the MWAITX
instruction occurs when the timer expires. The presence of the MONITORX and
MWAITX instructions is indicated by CPUID 8000_0001, ECX, bit 29.
The MONITORX and MWAITX instructions are intercepted by the same bits that
intercept MONITOR and MWAIT. MONITORX instruction establishes a range to be
monitored. MWAITX instruction causes the processor to stop instruction execution
and enter an implementation-dependent optimized state until occurrence of a
class of events.
Opcode of MONITORX instruction is "0F 01 FA". Opcode of MWAITX instruction is
"0F 01 FB". These opcode information is used in adding tests for the
disassembler.
These instructions are enabled for AMD's bdver4 architecture.
Patch by Ganesh Gopalasubramanian!
Reviewers: echristo, craig.topper, RKSimon
Subscribers: RKSimon, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19795
llvm-svn: 269911
MC only needs to know if the output is PIC or not. It never has to
decide about creating GOTs and PLTs for example. The only thing that
MC itself uses this information for is expanding "macros" in sparc and
mips. The rest I am pretty sure could be moved to CodeGen.
This is a cleanup and isolates the code from future changes to
Reloc::Model.
llvm-svn: 269909
It defined the LLVM_AVR_GCC_COMPAT constant, which would enable/disable
certain GCC-specific behaviours.
There is no point conditionally turning it on/off, as it will always be
turned on, and we have to maintain both code paths anyway.
llvm-svn: 269904
Restrict the creation of compact branches so that they do meet the ISA
requirements. Notably do not permit $zero to be used as a operand for compact
branches and ensure that some other branches fulfil the requirement that
rs != rt.
Fixup cases where $rs > $rt for bnec and beqc.
Recommit of rL269893 with reviewers comments.
Reviewers: dsanders, vkalintiris
Differential Review: http://reviews.llvm.org/D20284
llvm-svn: 269899
Restrict the creation of compact branches so that they meet the ISA encoding
requirements. Notably do not permit $zero to be used as a operand for compact
branches and ensure that some other branches fulfil the requirement that
rs != rt.
Fixup cases where $rs > $rt for bnec and beqc.
Reviewers: dsanders, vkalintiris
Differential Review: http://reviews.llvm.org/D20284
llvm-svn: 269893
This change adds support for software floating point operations for Sparc targets.
This is the first in a set of patches to enable software floating point on Sparc. The next patch will enable the option to be used with Clang.
Differential Revision: http://reviews.llvm.org/D19265
llvm-svn: 269892
We currently don't represent get_local and set_local explicitly; they
are just implied by virtual register use and def. This avoids a lot of
clutter, but it does complicate stackifying: get_locals read their
operands at their position in the stack evaluation order, rather than
at their parent instruction. This patch adds code to walk the stack to
determine the precise ordering, when needed.
llvm-svn: 269854
This patch moves the expansion of WIN_ALLOCA pseudo-instructions
into a separate pass that walks the CFG and lowers the instructions
based on a conservative estimate of the offset between the stack
pointer and the lowest accessed stack address.
The goal is to reduce binary size and run-time costs by removing
calls to _chkstk. While it doesn't fix all the code quality problems
with inalloca calls, it's an incremental improvement for PR27076.
Differential Revision: http://reviews.llvm.org/D20263
llvm-svn: 269828
Since r207518 they are printed exactly like non-hidden stubs on x86 and
since r207517 on ARM.
This means we can use a single set for all stubs in those platforms.
llvm-svn: 269776
The movw instruction is only available in ARM state for V6T2 and above.
The MOVi16 instruction has requirement HasV6T2 but the InstAlias
for mov rd, imm where the operand is imm0_65535_expr:$imm does not.
This means that movw can incorrectly be used in ARMv4 and ARMv5 by
writing mov rd, 0x1234. The simple fix is to the requirement HasV6T2
to the InstAlias. Tests added to not-armv4.s.
Patch by Peter Smith.
llvm-svn: 269761
This patch adds the commandline option -mips-compact-branches={never,optimal,always),
which controls how LLVM generates compact branches for MIPS targets. By
default, the compact branch policy is 'optimal' where LLVM will (hopefully)
pick the optimal branch for any situation. The 'never' policy will disable
the generation of compact branches and 'always' will generate compact branches
wherever possible.
Reviewers: dsanders
Differential Review: http://reviews.llvm.org/D20167
llvm-svn: 269753
PrologEpilogInserter has these 3 phases, which are related, but not
all of them are needed by all targets. This patch reorganizes PEI's
varous functions around those phases for more clear separation. It also
introduces a new TargetMachine hook, usesPhysRegsForPEI, which is true
for non-virtual targets. When it is true, all the phases operate as
before, and PEI requires the AllVRegsAllocated property on
MachineFunctions. Otherwise, CSR spilling and scavenging are skipped and
only prolog/epilog insertion/frame finalization is done.
Differential Revision: http://reviews.llvm.org/D18366
llvm-svn: 269750
MachineInstr::isSafeToMove is more conservative than is needed here;
use a more explicit check, and incorporate knowledge of some
WebAssembly-specific opcodes.
llvm-svn: 269736
This was assuming it could use all memory before, which is
a bad decision because it restricts occupancy.
By default, only try to use enough space that could reduce
occupancy to 7, an arbitrarily chosen limit.
Based on the exist LDS usage, try to round up to the limit
in the current tier instead of further hurting occupancy.
This isn't ideal, because it doesn't accurately know how much
space is going to be used for alignment padding.
llvm-svn: 269708
Summary:
Fix bug in MachO path where a frame index offset would not be reserved
for handling large frames when an extra non-used callee-save register
was saved. In the case where the extra register is reserved or not a
GPR (e.g. %FP in the MachO case), this would lead to the register
scavenger later failing when called from PrologEpilogInserter.
Reviewers: t.p.northover
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20185
llvm-svn: 269697
Summary: On Linux, /usr/include/bits/byteswap-16.h defines __byteswap_16(x) as an inlined LRVH (Load Reversed Half-word) instruction. The SystemZ back-end did not support this opcode and the inlined assembly would cause a fatal error.
Reviewers: bryanpkc, uweigand
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18732
llvm-svn: 269688
The new X86 shuffle lowering can do just fine without transforming vselects
into vector_shuffles. It looks like the only thing this code does right now
is cause trouble - in particular, it can lead to combine/legalization infinite
loops.
Note that it's not completely NFC, since some of the shuffle masks get inverted,
which may cause slight differences further down the line. We may want to find
a way to invert those masks, but that's orthogonal to this commit.
This fixes the hang in PR27689.
llvm-svn: 269676
This patch uses PSHUFB to lower vector CTLZ and avoid (slower) scalarizations.
The leading zero count of each 4-bit nibble of the vector is determined by using a PSHUFB lookup. Pairs of results are then repeatedly combined up to the original element width.
Differential Revision: http://reviews.llvm.org/D20016
llvm-svn: 269646
Summary:
The failure r269410 worked around turned out to be caused by an incorrect
evaluation of R_MICROMIPS_GOT16 which then caused the GOT entries to be
incorrect.
This patch fixes the evaluation and reverts r269410.
Reviewers: sdardis, vkalintiris, rafael
Subscribers: rafael, dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D20242
llvm-svn: 269641
Summary:
This fixes PR27682. Additionally, '.set micromips' by itself is not sufficient
to raise the EF_MIPS_MICROMIPS flag. It is also necessary to emit a microMIPS
instruction. This has also been fixed.
Reviewers: sdardis, vkalintiris, rafael
Subscribers: rafael, dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D20214
llvm-svn: 269639
Author: obucina
Reviewers: dsanders
Adds support for third operand for [D]DIV[U] instructions. Additional test for case when destination reg is zero register
Differential Revision: http://reviews.llvm.org/D16888
llvm-svn: 269636
It seems that cl will emit the export directives for Windows ARM targets. The
fact that it did this had originally been missed and this functionality was
never implemented. This makes it possible to rely solely on the source code for
indicating what the exported interfaces are and brings us more compatibility
with cl.
llvm-svn: 269574
Summary:
The MIPS IAS can now pass 'ninja check-all', recurse, build a bootable linux
kernel, and pass a variety of LNT testing.
Unfortunately we can't enable it by default for 64-bit targets yet since the N32
ABI is still very buggy and this also means we can't enable it for N64 either
because we can't distinguish between N32 and N64 in the relevant code.
Reviewers: vkalintiris
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D18759
Differential Revision: http://reviews.llvm.org/D18761
llvm-svn: 269560
compiler-rt/libgcc shift routines expect the shift count to be an i32, so
use i32 as the shift count for shifts that are legalized to libcalls. This
also reverts r268991, now that the signatures are correct.
llvm-svn: 269531
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269519
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269509
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
Part of llvm.org/pr26808.
llvm-svn: 269505
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269490
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
Part of llvm.org/pr26808.
llvm-svn: 269483
When setting the frame pointer, the offset from SP is calculated based on the
stack slot it gets allocated, but this slot is in turn based on the order of
the CSR list so that list should match the order we actually save the registers
in. Mostly it did, but in the edge-case of MachO AAPCS targets it was wrong.
llvm-svn: 269459
Recent changes to the instruction selection code exposed a problem where
a dead node was not removed on time. This node had both input and output
chains, which lead to an apparent cycle.
llvm-svn: 269458
- Insert one nop for each high level statement instead of two
- Do not insert nop before prologue
Differential Revision: http://reviews.llvm.org/D20215
llvm-svn: 269452
Most immediates are printed in Aarch64InstPrinter using 'formatImm' macro,
but not all of them.
Implementation contains following rules:
- floating point immediates are always printed as decimal
- signed integer immediates are printed depends on flag settings
(for negative values 'formatImm' macro prints the value as i.e -0x01
which may be convenient when imm is an address or offset)
- logical immediates are always printed as hex
- the 64-bit immediate for advSIMD, encoded in "a🅱️c:d:e:f:g:h" is always printed as hex
- the 64-bit immedaite in exception generation instructions like:
brk, dcps1, dcps2, dcps3, hlt, hvc, smc, svc is always printed as hex
- the rest of immediates is printed depends on availability
of -print-imm-hex
Signed-off-by: Maciej Gabka <maciej.gabka@arm.com>
Signed-off-by: Paul Osmialowski <pawel.osmialowski@arm.com>
Differential Revision: http://reviews.llvm.org/D16929
llvm-svn: 269446
It's not entirely clear why R_MICROMIPS_(GOT|HI16|LO16) are evaluated
incorrectly in a small number of the LNT tests at this point. However, it's not
related to the STO_MIPS_MICROMIPS issue.
At this point all the microMIPS-related changes of r268900 have been reverted.
llvm-svn: 269410
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269393
We only really need this to be true for SIFixSGPRCopies.
I'm not sure there's any way this could happen before that point.
Fixes a case where MachineCSE could introduce a cross block
scc use.
llvm-svn: 269391
This one has a lot of code churn, but it's all mechanical and
straightforward.
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269379
- Where we were returning a node before, call ReplaceNode instead.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269364
- Where we were returning a node before, call ReplaceNode instead.
- Where we had already replaced all uses and we returned a node, just
remove the dead node instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
Part of llvm.org/pr26808.
llvm-svn: 269358
This change implements the transformation in processInstruction() for the
LDR rt, =expression to MOV rt, expression when the expression can be evaluated
and can fit into the immediate field of the MOV or a MVN.
Across the ARM and Thumb instruction sets there are several cases to consider,
each with a different range of representatble constants.
In ARM we have:
* Modified immediate (All ARM architectures)
* MOVW (v6t2 and above)
In Thumb we have:
* Modified immediate (v6t2, v7m and v8m.mainline)
* MOVW (v6t2, v7m, v8.mainline and v8m.baseline)
* Narrow Thumb MOV that can be used in an IT block (non flag-setting)
If the immediate fits any of the available alternatives then we make the transformation.
Fixes 25722.
Patch by Peter Smith.
llvm-svn: 269354
This change adds a new constant pool kind to ARMOperand. When parsing the
operand for =immediate we create an instance of this operand rather than
creating a constant pool entry and rewriting the operand.
As the new operand kind is only created for ldr rt,= we can make ldr rt,=
an explicit pseudo instruction in ARM, Thumb and Thumb2
The pseudo instruction is expanded in processInstruction(). This creates the
constant pool and transforms the pseudo instruction into a pc-relative ldr to
the constant pool.
There are no functional changes and no modifications needed to existing tests.
Required by the patch that fixes PR25722.
Patch by Peter Smith.
llvm-svn: 269352
- Where we were returning a node before, call ReplaceNode instead.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269350
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269349
Summary:
This expands on r269179 to fix an additional case that was not covered by our
tests. The assembler temporary is not needed when the .cprestore offset fits
inside a simm16 and it is not an error to use it inside a '.set noat' in this
case.
Reviewers: emaste, seanbruno, sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D20199
llvm-svn: 269295
As explained in r269196, microMIPS has a special case that is not correctly
implemented in LLVM. If we have a symbol 'foo' which is equivalent to
'.text+0x10'. The value of an R_MICROMIPS_LO16 relocation using 'foo' is
'foo+0x11' and not 'foo+0x10'. The in-place addend should therefore be 0x11.
This commit reverts a little more of the effect of r268900 by keeping the
symbol when the STO_MIPS_MICROMIPS flag is set for R_MIPS_GPREL32 relocations.
This fixes SingleSource/UnitTests/2003-08-11-VaListArg, and
SingleSource/UnitTests/2003-05-07-VarArgs for microMIPS.
I believe there are additional relocations that have the same issue (e.g.
R_MIPS_64, and R_MIPS_GPREL16) but for now I'm focusing on restoring our
internal buildbots back to the green state we had in r268899.
llvm-svn: 269294
Fix "Logic error" warnings of the type "Called C++ object pointer is
null" reported by Clang Static Analyzer.
Patch by Apelete Seketeli.
llvm-svn: 269285
Summary:
This eliminates the default case for N64 that was left out of r269047.
The change to R_MIPS_SUB is needed in this patch to make this testable since
%lo(%neg(%gp_rel(foo))) and %hi(%neg(%gp_rel(foo))) remain the only ways to get
a compound relocation from the assembler.
Reviewers: sdardis, rafael
Subscribers: dsanders, llvm-commits, sdardis
Differential Revision: http://reviews.llvm.org/D20097
llvm-svn: 269280
While promoting nodes in PPCTargetLowering::DAGCombineExtBoolTrunc, it is
possible for one of the nodes to be replaced by another. To make sure we do not
visit the deleted nodes, and to make sure we visit the replacement nodes, use a
list of HandleSDNodes to track the to-be-promoted nodes during the promotion
process.
The same fix has been applied to the analogous code in
PPCTargetLowering::DAGCombineTruncBoolExt.
Fixes PR26985.
llvm-svn: 269272
The promote alloca pass would attempt to promote an alloca with
a select, icmp, or phi user, even though the other operand was
from a non-promotable source, producing a select on two different
pointer types.
Only do this if we know that both operands derive from the same
alloca. In the future we should be able to relax this to an alloca
which will also be promoted.
llvm-svn: 269265
This is a large change, but it's pretty mechanical:
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269258
It's very common to want to replace a node and then remove it since
it's dead, especially as we port backends from the SDNode *Select API
to the void Select one. This helper makes this sequence a bit less
verbose.
llvm-svn: 269236
For narrow stores (e.g., strb, srth) we know the upper bits of the register are
unused/not useful. In some cases we can use this information to eliminate
unnecessary instructions.
For example, without this patch we generate (from the 2nd test case):
ldr w8, [x0]
and w8, w8, #0xfff0
bfxil w8, w2, #16, #4
strh w8, [x1]
and after the patch the 'and' is removed:
ldr w8, [x0]
bfxil w8, w2, #16, #4
strh w8, [x1]
ret
During the lowering of the bitfield insert instruction the 'and' is eliminated
because we know the upper 16-bits that are masked off are unused and the lower
4-bits that are masked off are overwritten by the insert itself. Therefore, the
'and' is unnecessary.
Differential Revision: http://reviews.llvm.org/D20175
llvm-svn: 269226
Don't bother returning a result we don't use here. I've also renamed
this from selectGather to tryGather to better indicate that it may not
do anything.
llvm-svn: 269215
microMIPS has a special case that is not correctly implemented in LLVM. If we
have a symbol 'foo' which is equivalent to '.text+0x10'. The value of an
R_MICROMIPS_LO16 relocation using 'foo' is 'foo+0x11' and not 'foo+0x10'. The
in-place addend should therefore be 0x11.
Work around this by partially reverting the effect of r268900 by keeping the
symbol when the STO_MIPS_MICROMIPS flag is set. This fixes
SingleSource/Regression/C/PR640 for microMIPS.
llvm-svn: 269196
When generating .cfi_offset instructions, make sure that the offset is
calculated with respect to the register used to define the CFA (which is
currently always FP+8).
llvm-svn: 269191
Summary:
r268058 unintentionally made the retrieval of the current assembler temporary
unconditional. This was fine for the existing tests but it broke the cases
where the assembler temporary is not needed (N32/N64 or not PIC) and is
unavailable due to a '.set noat' directive.
This fixes FreeBSD's libc.
Reviewers: emaste, sdardis, seanbruno
Subscribers: dsanders, emaste, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D20093
llvm-svn: 269179
Summary: When emitting comparison for fp16, in addition to promote the LHS and RHS to fp32, we need to change the VT as well.
Reviewers: t.p.northover
Subscribers: t.p.northover, aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D19922
llvm-svn: 269151
Unlike xN/wN, the size of vN is genuinely ambiguous in the assembly, so we
should try to infer what was intended from the type. But only down to 64-bits
(vN can never represent sN, hN or bN).
llvm-svn: 269132
This is a bit of a spot fix for now. I'll try to fix this up more
comprehensively soon.
This is part of the work to have Select return void instead of an
SDNode *, which is in turn part of llvm.org/pr26808.
llvm-svn: 269120
This fixes a bug introduced in r267623, where we got smarter and avoided to save
EAX before using it. However, we failed to check if any of the subregister of
EAX were alive and thus, missed cases where we have to save EAX before using it.
The problem may happen on every X86/i386/... platform.
This fixes llvm.org/PR27624
llvm-svn: 269115
This is a bit of a spot fix for now. I'll try to fix this up more
comprehensively soon.
This is part of the work to have Select return void instead of an
SDNode *, which is in turn part of llvm.org/pr26808.
llvm-svn: 269112
Remove the ModuleLevelChanges argument, and the ability to create new
subprograms for cloned functions. The latter was added without review in
r203662, but it has no in-tree clients (all non-test callers pass false
for ModuleLevelChanges [1], so it isn't reachable outside of tests). It
also isn't clear that adding a duplicate subprogram to the compile unit is
always the right thing to do when cloning a function within a module. If
this functionality comes back it should be accompanied with a more concrete
use case.
Furthermore, all in-tree clients add the returned function to the module.
Since that's pretty much the only sensible thing you can do with the function,
just do that in CloneFunction.
[1] http://llvm-cs.pcc.me.uk/lib/Transforms/Utils/CloneFunction.cpp/rCloneFunction
Differential Revision: http://reviews.llvm.org/D18628
llvm-svn: 269110
Added support for extended mnemonics for the following branch instructions and
load/store-on-condition opcodes:
BR, LOCR, LOCGR, LOC, LOCG, STOC, STOCG
Phabricator: http://reviews.llvm.org/D19729
Committing on behalf of Zhan Liau
llvm-svn: 269106
I'm really not sure why we were in the first place, it's the linker's job to
convert between BL/BLX as necessary. Even worse, using BLX left Thumb calls
that could be locally resolved completely unencodable since all offsets to BLX
are multiples of 4.
rdar://26182344
llvm-svn: 269101
Currently, SelectionDAG assumes 8/16-bit cmpxchg returns either a sign
extended result, or a zero extended result. SystemZ takes a third
option by returning junk in the high bits (rotated contents of the other
bytes in the memory word). In that case, don't use Assert*ext, and
zero-extend the result ourselves if a comparison is needed.
Differential Revision: http://reviews.llvm.org/D19800
llvm-svn: 269075
Following post-commit comments on r268900 from Rafael Espindola:
The missing relocations are now explicitly listed in the switch statement with
appropriate FIXME comments and the default path is now unreachable. The
temporary exception to this is that compound relocations for N64 still have a
default path that returns true. This is because fixing that case ought to be a
separate patch.
Also make R_MIPS_NONE return false since it has no effect on the section data.
llvm-svn: 269047
SystemZ (and probably other targets as well) can fold a memory operand
by changing the opcode into a new instruction that as a side-effect
also clobbers the CC-reg.
In order to do this, liveness of that reg must first be checked. When
LIS is passed, getRegUnit() can be called on it and the right
LiveRange is computed on demand.
Reviewed by Matthias Braun.
http://reviews.llvm.org/D19861
llvm-svn: 269026
Move the register stackification and coloring passes to run very late, after
PEI, tail duplication, and most other passes. This means that all code emitted
and expanded by those passes is now exposed to these passes. This also
eliminates the need for prologue/epilogue code to be manually stackified,
which significantly simplifies the code.
This does require running LiveIntervals a second time. It's useful to think
of these late passes not as late optimization passes, but as a domain-specific
compression algorithm based on knowledge of liveness information. It's used to
compress the code after all conventional optimizations are complete, which is
why it uses LiveIntervals at a phase when actual optimization passes don't
typically need it.
Differential Revision: http://reviews.llvm.org/D20075
llvm-svn: 269012
Many files include Passes.h but only a fraction needs to know about the
TargetPassConfig class. Move it into an own header. Also rename
Passes.cpp to TargetPassConfig.cpp while we are at it.
llvm-svn: 269011
When loading or storing AVX512 registers we were not using the AVX512
variant of the load and store for VR128 and VR256 like registers.
Thus, we ended up with the wrong encoding and actually were dropping the
high bits of the instruction. The result was that we load or store the
wrong register. The effect is visible only when we emit the object file
directly and disassemble it. Then, the output of the disassembler does
not match the assembly input.
This is related to llvm.org/PR27481.
llvm-svn: 269001
Currently the signature of the functions
i128(i128, i32) aka void(i32, i64, i64, i32) doesn't match the signature
of the call emitted by the default lowering, void(i32, i64, i64).
llvm-svn: 268991
The call to Select on Upper here happens in an unusual order in order
to defeat the constant folding that getNode() does. Add a comment
explaining why we can't just move the Select to later to avoid a
Handle, and wrap the call to SelectCode in a handle so we don't need
its return value.
This is part of the work to have Select return void instead of an
SDNode *, which is in turn part of llvm.org/pr26808.
llvm-svn: 268990
We used to list registers that were not in the AVX space. In other
words, we were pushing registers that the ISA cannot encode
(YMM16-YMM31).
This is part of llvm.org/PR27481.
llvm-svn: 268983
This is similar to r268953, but for floating point and vector register
classes.
Explanations:
The setting of the inline asm constraints was implicitly relying on the
order of the register classes in the file generated by tablegen.
Since, we do not have any control on that order, make sure we do not
depend on it anymore.
llvm-svn: 268973
As discussed on PR24888, until SSE42 we don't have access to PCMPGTQ for v2i64 comparisons, but the cost models don't reflect this, resulting in over-optimistic vectorizaton.
This patch adds SSE2 'base level' costs that match what a typical target is capable of and only reduces the v2i64 costs at SSE42.
Technically SSE41 provides a PCMPEQQ v2i64 equality test, but as getCmpSelInstrCost doesn't give us a way to discriminate between comparison test types we can't easily make use of this, otherwise we could split the cost of integer equality and greater-than tests to give better costings of each.
Differential Revision: http://reviews.llvm.org/D20057
llvm-svn: 268972
This reapplies commit r268796, with a fix for the setting of the inline asm
constraints. I.e., "mark" LOW32_ADDR_ACCESS_RBP as a GR variant, so that the
regular processing of the GR operands (setting of the subregisters) happens.
Original commit log:
[X86] Add a new LOW32_ADDR_ACCESS_RBP register class.
ABIs like NaCl uses 32-bit addresses but have 64-bit frame.
The new register class reflects those constraints when choosing a
register class for a address access.
llvm-svn: 268955
The setting of the inline asm constraints was implicitly relying on the
order of the register classes in the file generated by tablegen.
Since, we do not have any control on that order, make sure we do not
depend on it anymore.
llvm-svn: 268953
This patch corresponds to review:
http://reviews.llvm.org/D19683
Simply adds the bits for being able to specify -mcpu=pwr9 to the back end.
llvm-svn: 268950
Summary:
Previously, it returned the GPR16MMRegClass for all instructions which was
incorrect for instructions like lwsp/lwgp and unnecesarily restricted the
permitted registers for instructions like lw32.
This fixes quite a few of the -verify-machineinstrs errors reported in PR27458.
I've only added -verify-machineinstrs to one test in this change since I
understand there is a plan to enable the verifier by default.
Reviewers: hvarga, zbuljan, zoran.jovanovic, sdardis
Subscribers: dsanders, llvm-commits, sdardis
Differential Revision: http://reviews.llvm.org/D19873
llvm-svn: 268918
This patch fixes register alignment for long double type in
soft float mode. Before this patch alignment was 8 and this
patch changes it to 4.
Differential Revision: http://reviews.llvm.org/D18034
llvm-svn: 268909
This change adds SMAC (signed multiply-accumulate) and UMAC (unsigned multiply-accumulate) for LEON subtargets of the Sparc processor.
The new files LeonFeatures.td and leon-instructions.ll will both be expanded in future, so I want to leave them separate as small files for this review, to be expanded in future check-ins.
Note: The functions are provided only for inline-assembly provision. No DAG selection is provided.
Differential Revision: http://reviews.llvm.org/D19911
llvm-svn: 268908
Summary:
This implements the lowering of the X constraint on
AArch64.
The default behaviour of the X constraint lowering is to
restrict it to "f". This is a problem because the "f"
constraint is not implemented on AArch64 and would be too
restrictive anyway. Therefore, the AArch64 hook will
lower this to "w" (if the operand is a floating point or
vector) or "r" otherwise.
The implementation is similar with the one added for
ARM (r267411).
This is the AArch64 side of the fix for http://llvm.org/PR26493
Reviewers: rengolin
Subscribers: aemerson, rengolin, llvm-commits, t.p.northover
Differential Revision: http://reviews.llvm.org/D19967
llvm-svn: 268907
Summary:
In theory, care must be taken to ensure that pairs of R_MIPS_(GOT|HI|LO)16
make the same decision on both relocs in the reloc pair but in practice
this isn't as hard as it sounds and only limits the complexity of the
predicate used. We handle all three with the same code to ensure their
decisions always agree with each other.
Reviewers: sdardis
Subscribers: rafael, dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D19016
llvm-svn: 268900
A number of libcalls don't exist in any particular lib but are, instead,
defined in math.h as inline functions (even in C mode!). Don't rely on
their existence when lowering @llvm.{cos,sin,floor,..}.f32, promote them
instead.
N.B. We had logic to handle FREM but were missing out on a number of
others. This change generalizes the FREM handling.
llvm-svn: 268875
(re-apply r268810 as it exposed an uninitialized variable in ARM MFI.
Patch 268868 should fix that.)
Summary:
Currently, when checking if a stack is "BigStack" or not, it doesn't count into spills and arguments. Therefore, LLVM won't reserve spill slot for this actually "BigStack". This may cause scavenger failure.
Reviewers: rengolin
Subscribers: vitalybuka, aemerson, rengolin, tberghammer, danalbert, srhines, llvm-commits
Differential Revision: http://reviews.llvm.org/D19896
llvm-svn: 268869
This re-applies r268760, reverted in r268794.
Fixes http://llvm.org/PR27670
The original imp-defs assertion was way overzealous: forward all
implicit operands, except imp-defs of the new super-reg def (r268787
for GR64, but also possible for GR16->GR32), or imp-uses of the new
super-reg use.
While there, mark the source use as Undef, and add an imp-use of the
old source reg: that should cover any case of dead super-regs.
At the stage the pass runs, flags are unlikely to matter anyway;
still, let's be as correct as possible.
Also add MIR tests for the various interesting cases.
Original commit message:
Codesize is less (16) or equal (8), and we avoid partial
dependencies.
Differential Revision: http://reviews.llvm.org/D19999
llvm-svn: 268831
(this is resubmit of r268529 with minor refactoring. r268529 was reverted
at r268536 due a memory sanitizer failure. I have not been able to
reproduce that failure and I checked all the variable used in my change
but I could not spot an issue. I did some refactoring and see if it will
give a clearer hint)
Summary:
Currently, when checking if a stack is "BigStack" or not, it doesn't count into spills and arguments. Therefore, LLVM won't reserve spill slot for this actually "BigStack". This may cause scavenger failure.
Reviewers: rengolin
Subscribers: vitalybuka, aemerson, rengolin, tberghammer, danalbert, srhines, llvm-commits
Differential Revision: http://reviews.llvm.org/D19896
llvm-svn: 268810
ABIs like NaCl uses 32-bit addresses but have 64-bit frame.
The new register class reflects those constraints when choosing a
register class for a address access.
llvm-svn: 268796
This register class may be used by any ABIs that uses x86_64 ISA while
using 32-bit addresses, not just in X32 cases. Make sure the name
reflects that.
llvm-svn: 268795
Some custom Operands and AsmOperandClasses moved to proper place.
No functional changes.
Differential Revision: http://reviews.llvm.org/D20012
llvm-svn: 268780
In a case like
J2_callr <ga:@foo>, %R0<imp-use>, ...
R0<def> = ...
the anti-dependency on R0 cannot be ignored and the two instructions
cannot be packetized together, since if they were, the assignment to
R0 would take place before the call.
llvm-svn: 268776
Added support for sendmsg(MSG[, OP[, STREAM_ID]]) syntax
in s_sendmsg and s_sendmsghalt instructions.
The syntax matches the SP3 assembler/disassembler rules.
That is why implicit inputs (like M0 and EXEC) are not printed
to disassembly output anymore.
sendmsg(...) allows only known message types and attributes,
even if literals are used instead of symbolic names.
However, raw literal (without "sendmsg") still can be used,
and that allows for any 16-bit value.
Tests updated/added.
Differential Revision: http://reviews.llvm.org/D19596
llvm-svn: 268762
Instead of passing around sizes and asking for subregs, we can check
the subreg indices we care about: sub_8bit_hi and sub_8bit.
Differential Revision: http://reviews.llvm.org/D20006
llvm-svn: 268753
Summary:
If a function needs to allocate both callee-save stack memory and local
stack memory, we currently decrement/increment the SP in two steps:
first for the callee-save area, and then for the local stack area. This
changes the code to allocate them both at once at the very beginning/end
of the function. This has two benefits:
1) there is one fewer sub/add micro-op in the prologue/epilogue
2) the stack adjustment instructions act as a scheduling barrier, so
moving them to the very beginning/end of the function increases post-RA
scheduler's ability to move instructions (that only depend on argument
registers) before any of the callee-save stores
This change can cause an increase in instructions if the original local
stack SP decrement could be folded into the first store to the stack.
This occurs when the first local stack store is to stack offset 0. In
this case we are trading off one more sub instruction for one fewer sub
micro-op (along with benefits (2) and (3) above).
Reviewers: t.p.northover
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18619
llvm-svn: 268746
Summary: This change refactors to decouple the zero store promotion from the narrow ld merge and add a flag (enable-narrow-ld-merge=true) to control the narrow ld merge optimization.
Reviewers: jmolloy, t.p.northover, mcrosier
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19885
llvm-svn: 268744
Summary:
Direct object emission has an initialization order problem where an
InitMCObjectFile is called after MipsTargetELFStreamer determines whether
PIC is enabled by default or not. There doesn't seem to be point that
initializes all cases so split the responsibility between
MipsTargetELFStreamer and MipsAsmPrinter.
Reviewers: sdardis
Subscribers: dsanders, llvm-commits, sdardis
Differential Revision: http://reviews.llvm.org/D19728
llvm-svn: 268737
Summary:
There seems to have been a misunderstanding as to the meaning of 'offset' in
the rules laid down by our ABI. The previous code believed that 'offset' meant
the offset within the section that the relocation is applied to. However, it
should have meant the offset from the symbol used in the relocation expression.
This patch adds two fields to ELFRelocationEntry and uses them to correct the
order of relocations for MIPS. These fields contain:
* The original symbol before shouldRelocateWithSymbol() is considered. This
ensures that R_MIPS_GOT16 is able to correctly distinguish between local and
external symbols, allowing us to tell whether %got() requires a matching
%lo() or not (local symbols require one, external symbols don't). It also
prevents confusing cases where the fuzzy matching rules cause things like
%hi(foo)/%lo(foo+3) and %hi(bar)/%lo(bar+1) to swap their %lo()'s.
* The original offset before shouldRelocateWithSymbol() is considered. The
existing Addend field is always zero when the object uses in place addends
(because it's already moved it to the encoding) but MIPS needs to use the
original offset to ensure that the linker correctly calculates the carry-in
bit for %hi() and %got().
IAS ensures that unmatchable %hi()/%got() relocations are placed at the end of
the table to ensure that the linker rejects the table (we're unable to report
such errors directly). The alternatives to this risk accidental matching
against inappropriate relocations which may silently compute incorrect values
due to an incorrect carry bit between the %lo() and %hi()/%got().
Reviewers: sdardis
Subscribers: dsanders, sdardis, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D19718
llvm-svn: 268733
Summary:
This stops it misidentifying unconditional branches as conditional branches
which fixes a -verify-machineinstrs error about exiting a function via fall through.
Reviewers: sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D19864
llvm-svn: 268731
Summary:
This change allows to specify "DefaultMethod" for optional operand (IsOptional = 1) in AsmOperandClass that return default value for operand. This is used in convertToMCInst to set default values in MCInst.
Previously if you wanted to set default value for operand you had to create custom converter method. With this change it is possible to use standard converters even when optional operands presented.
Reviewers: tstellarAMD, ab, craig.topper
Subscribers: jyknight, dsanders, arsenm, nhaustov, llvm-commits
Differential Revision: http://reviews.llvm.org/D18242
llvm-svn: 268726
Summary:
Check calling convention in AMDGPUMachineFunction::isKernel
This will be used for AMDGPU_HSA_KERNEL symbol type in output ELF.
Also, in the future unused non-kernels may be optimized.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19917
llvm-svn: 268719
This is a step towards removing the rampant undefined behaviour in
SelectionDAG, which is a part of llvm.org/PR26808.
We rename SelectionDAGISel::Select to SelectImpl and update targets to
match, and then change Select to return void and consolidate the
sketchy behaviour we're trying to get away from there.
Next, we'll update backends to implement `void Select(...)` instead of
SelectImpl and eventually drop the base Select implementation.
llvm-svn: 268693
Given something like:
ldr r0, .LCPI0_0 (== pc-rel var)
add r0, pc
ldr r1, .LCPI0_1 (== pc-rel var)
add r1, pc
we cannot combine the 2 ldr instructions and litpools because they get added to
a different pc to form the correct address. I think the original logic came
from a time when we fused the LDRpci/PICADD instructions into one
pseudo-instruction so the PC was always immediately at-hand. That's no longer
the case.
Should fix general-dynamic TLS access on Linux, and quite possibly other -fPIC
code that relies on litpools (e.g. v6m and -Oz compilations) though trivial
tweaks of the .ll test didn't provoke anything.
llvm-svn: 268662
Summary:
Discovered by Dave Airlie, fixes an assertion in Khronos OpenGL CTS
GL43-CTS.shader_storage_buffer_object.advanced-matrix.
In this particular case, the buffer load intrinsic fed into a uniform
conditional branch, and led the brcond lowering down the wrong path.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19931
llvm-svn: 268650
Summary:
Version 2 is now the default. If you want to emit version 1, use
the amdgcn--amdhsa-amdcov1 triple.
Reviewers: arsenm, kzhuravl
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19283
llvm-svn: 268647
The instruction A2_tfrpi has a 64-bit operand, while the corresponding
intrinsic takes a 32-bit value. The actual value has only 8 significant
bits, so the difference is only in the type used to represent it.
In order to map the intrinsic to the instruction, the operand needs to
be extended to the correct type.
llvm-svn: 268635
This backend was supposed to generate C++ code which will re-construct
the LLVM IR passed as input. This seems to me to have very marginal
usefulness in the first place.
However, the code has never been updated to use IRBuilder, which makes
its current value negative -- people who look at the output may be
steered to use the *wrong* C++ APIs to construct IR.
Furthermore, it's generated code that doesn't compile since at least
2013.
Differential Revision: http://reviews.llvm.org/D19942
llvm-svn: 268631
[mips] On error, ParseDirective should always return false to signify that the
directive was understood.
Reviewers: dsanders, vkalintiris, sdardis
Subscribers: dsanders, llvm-commits, sdardis
Differential Revision: http://reviews.llvm.org/D19929
llvm-svn: 268630
Both Linux and kFreeBSD use glibc, so follow similiar code paths.
Add isTargetGlibc to check for this, and use it instead of isTargetLinux
in a few places.
Fixes PR22248 for kFreeBSD.
Differential Revision: http://reviews.llvm.org/D19104
llvm-svn: 268624
The result type of setcc is dependent on whether or not AVX512 is
present.
We had an X86-specific DAG-combine which assumed that the result type
should be i8 when it could be i1.
This meant that we would generate illegal setccs which LowerSETCC did
not like.
Instead, use an appropriate type and zero extend to i8.
Also, there were some scenarios where the fold should have fired but
didn't because we were overly cautious about the types. This meant that
we generated:
shrl $31, %edi
andl $1, %edi
kmovw %edi, %k0
kxnorw %k0, %k0, %k1
kshiftrw $15, %k1, %k1
kxorw %k1, %k0, %k0
kmovw %k0, %eax
instead of:
testl %edi, %edi
setns %al
This fixes PR27638.
llvm-svn: 268609
The code here is recursively Select-ing a new Node to avoid issues
where N is CSE'd during replaceDAGValue and stops being valid. We can
accomplish the same goal in a more principled way by using a
HandleSDNode.
This is essentially a less dodgy fix for PR25733 than the original
attempt back in r255120.
llvm-svn: 268590
This introduces a SystemZ-specific "backchain" attribute on function, which
enables writing the frame backchain link as specified by the ABI. This will
be used to implement -mbackchain option in clang.
Differential Revision: http://reviews.llvm.org/D19889
Fixed in this version: added RegState::Define and RegState::Kill on R1D
in prologue.
llvm-svn: 268581
This introduces a SystemZ-specific "backchain" attribute on function, which
enables writing the frame backchain link as specified by the ABI. This will
be used to implement -mbackchain option in clang.
Differential Revision: http://reviews.llvm.org/D19889
llvm-svn: 268571
The new register classes allow to tell the machine verifier that it is
fine to use RIP for address accesses in x32 mode. Prior to that patch,
we would complain that we are using a GR64 in place of GR32, whereas it
is actually fine to use GR64 for x32 as long as the 32 high bits are 0s.
RIP has this property and is used for RIP-relative addressing.
This partially fixes http://llvm.org/PR27481.
llvm-svn: 268567
This patch adds support for estimating the square root, its reciprocal and
division or reciprocal using the combiner generic reciprocal machinery.
llvm-svn: 268539
Summary:
Currently, when checking if a stack is "BigStack" or not, it doesn't count into spills and arguments. Therefore, LLVM won't reserve spill slot for this actually "BigStack". This may cause scavenger failure.
Reviewers: rengolin
Subscribers: aemerson, rengolin, tberghammer, danalbert, srhines, llvm-commits
Differential Revision: http://reviews.llvm.org/D19896
llvm-svn: 268529
This patch corresponds to review:
http://reviews.llvm.org/D18592
It allows the PPC back end to generate the xxspltw instruction where we
previously only emitted vspltw.
llvm-svn: 268516
Use std::make_pair instead of constructor
Use C++11 loop
Reuse helper var
Reviewers: tstellardAMD
Subsribers: arsenm
Differential Revision: http://reviews.llvm.org/D19787
llvm-svn: 268503
As requested by Rafael Espindola in his post-commit comments on r268036. This
makes the previous behaviour the default while still allowing verification of
IAS.
llvm-svn: 268496
Modification of previously existing code (variable rename only), with unit test added.
Differential Revision: http://reviews.llvm.org/D19368
llvm-svn: 268493
This code implements builtin_setjmp and builtin_longjmp exception handling intrinsics for 32-bit Sparc back-ends.
The code started as a mash-up of the PowerPC and X86 versions, although there are sufficient differences to both that had to be made for Sparc handling.
Note: I have manual tests running. I'll work on a unit test and add that to the rest of this diff in the next day.
Also, this implementation is only for 32-bit Sparc. I haven't focussed on a 64-bit version, although I have left the code in a prepared state for implementing this, including detecting pointer size and comments indicating where I suspect there may be differences.
Differential Revision: http://reviews.llvm.org/D19798
llvm-svn: 268483
i1 is now a legal type for X86 with AVX512.
There were some paths in X86FastISel which were not quite ready to see
an i1 value: they were not quite sure how to deal with sign/zero extends
for call arguments.
DTRT by extending to i8 for zeroext and bailing out of FastISel for
signext.
This fixes PR27591.
llvm-svn: 268470
This patch changes the TargetMachine arguments to be const. This is
required for {D19265}, and was requested to be done in a separate patch.
Patch by Jacob Hansen!
Differential Revision: http://reviews.llvm.org/D19797
llvm-svn: 268389
Summary:
It's always zero for SelectionDAG and is never read by the MIPS backend so
do the same for FastISel.
Reviewers: sdardis
Subscribers: dsanders, llvm-commits, sdardis
Differential Revision: http://reviews.llvm.org/D19863
llvm-svn: 268386
Summary:
This is much closer to the way MIPS relocation expressions work
(%hi(foo + 2) rather than %hi(foo) + 2) and removes the need for the
various bodges in MipsAsmParser::evaluateRelocExpr().
Removing those bodges ensures that the constant stored in MCValue is the
full 32 or 64-bit (depending on ABI) offset from the symbol. This will be used
to correct the %hi/%lo matching needed to sort the relocation table correctly.
As part of this:
* Gave MCExpr::print() the ability to omit parenthesis when emitting a
symbol reference inside a MipsMCExpr operator like %hi(X). Without this
we print things like %lo(($L1)).
* %hi(%neg(%gprel(X))) is now three MipsMCExpr's instead of one. Most of
the related special cases have been removed or moved to MipsMCExpr. We
can remove the rest as we gain support for the less common relocations
when they are not part of this specific combination.
* Renamed MipsMCExpr::VariantKind and the enum prefix ('VK_') to avoid confusion
with MCSymbolRefExpr::VariantKind and its prefix (also 'VK_').
* fixup_Mips_GOT_Local and fixup_Mips_GOT_Global were found to be identical
and merged into fixup_Mips_GOT.
* MO_GOT16 and MO_GOT turned out to be identical and have been merged into
MO_GOT.
* VK_Mips_GOT and VK_Mips_GOT16 turned out to be the same thing so they
have been merged into MEK_GOT
Reviewers: sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D19716
llvm-svn: 268379
Remove the AddPristinesAndCSRs parameters from
addLiveIns()/addLiveOuts().
We need to respect pristine registers after prologue epilogue insertion,
Seeing that we got this wrong in at least two commits already, we should
rather pay the small price to query MachineFrameInfo for it.
There are three cases that did not set AddPristineAndCSRs to true even
after register allocation:
- ExecutionDepsFix: live-out registers are used as a hint that the
register is used soon. This is not true for pristine registers so
use the new addLiveOutsNoPristines() to maintain this behaviour.
- SystemZShortenInst: Not setting AddPristineAndCSRs to true looks like
a bug, should do the right thing automatically now.
- StackMapLivenessAnalysis: Not adding pristine registers looks like a
bug to me. Added a FIXME comment but maintain the current behaviour
as a change may need to get coordinated with GC runtimes.
llvm-svn: 268336
This operation may branch to the handler block and we do not want it
to happen anywhere within the basic block.
Moreover, by marking it "terminator and branch" the machine verifier
does not wrongly assume (because of AnalyzeBranch not knowing better)
the branch is analyzable. Indeed, the target was seeing only the
unconditional branch and not the faulting load op and thought it was
a simple unconditional block.
The machine verifier was complaining because of that and moreover,
other optimizations could have done wrong transformation!
In the process, simplify the representation of the handler block in
the faulting load op. Now, we directly reference the handler block
instead of using a label. This has the benefits of:
1. MC knows how to issue a label for a BB, so leave that to it.
2. Accessing the target BB from its label is painful, whereas it is
direct from a MBB operand.
Note: The 2 bytes offset in implicit-null-check.ll comes from the
fact the unconditional jumps are not removed anymore, as the whole
terminator sequence is not analyzable anymore.
Will fix it in a subsequence commit.
llvm-svn: 268327
We were using v_readlane_b32 with the lane set to zero, but this won't
work if thread 0 is not active.
Differential Revision: http://reviews.llvm.org/D19745
llvm-svn: 268295
Now that unaligned access expansion should not attempt
to produce i64 accesses, we can remove the hack in
PreprocessISelDAG where this is done.
This allows splitting i64 private accesses while
allowing the new add nodes indexing the vector components
can be folded with the base pointer arithmetic.
llvm-svn: 268293
Summary:
When we restore an SGPR value from scratch, we first load it into a
temporary VGPR and then use v_readlane_b32 to copy the value from the
VGPR back into an SGPR.
We weren't setting the kill flag on the VGPR in the v_readlane_b32
instruction, so the register scavenger wasn't able to re-use this
temp value later.
I wasn't able to create a lit test for this.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19744
llvm-svn: 268287
We were negating an immediate that was going to be used in a SUBri form
unnecessarily. Since ADD/SUB are very similar we *can* do that, but we have to
change the SUB to an ADD at the same time. This also applies to ADD, and allows
us to handle a slightly larger range of immediates for those two operations.
rdar://25992245
llvm-svn: 268276
Summary:
We don't have sign-/zero-extending ldg/ldu instructions defined,
so we need to emulate them with explicit CVTs. We were originally
handling the i8 case, but not any other cases.
Fixes PR26185
Reviewers: jingyue, jlebar
Subscribers: jholewinski
Differential Revision: http://reviews.llvm.org/D19615
llvm-svn: 268272
Summary:
Add support for detecting hazards in SMEM soft clauses, so that we only
break the clauses when necessary, either by adding s_nop or re-ordering
other alu instructions.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18870
llvm-svn: 268260
Summary:
This intrinsic is used to get flat-shaded fragment shader inputs. Those are
uniform across a primitive, but a fragment shader wave may process pixels from
multiple primitives (as indicated by the prim_mask), and so that's where
divergence can arise.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19747
llvm-svn: 268259
Marking implicit CC defs as dead everywhere except when CC is actually
defined and used explicitly, is important since the post-ra scheduler
will otherwise insert edges between instructions unnecessarily.
Also temporarily disable LA(Y)-> AGSI optimization in
foldMemoryOperandImpl(), since this inroduces a def of the CC reg,
which is illegal unless it is known to be dead.
Reviewed by Ulrich Weigand.
llvm-svn: 268215
This didn't cause a bug because the order of the patterns ensured that the 64-bit instructions with 32-bit immediates were selected first.
llvm-svn: 268212
If, in between the splat and the load (which does an implicit splat), there is
a read of the splat register, then that register must have another earlier
definition. In that case, we can't replace the load's destination register with
the splat's destination register.
Unfortunately, I don't have a small or non-fragile test case.
llvm-svn: 268152
Summary:
This includes a hazard recognizer implementation to replace some of
the hazard handling we had during frame index elimination.
Reviewers: arsenm
Subscribers: qcolombet, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18602
llvm-svn: 268143
If a block has no successors because it ends in unreachable,
this was accessing an invalid iterator.
Also stop counting instructions that don't emit any
real instructions.
llvm-svn: 268119
Move to addPreEmitPass. This is so it runs after post-RA
scheduling so we can merge s_nops emitted by the scheduler
and hazard recognizer.
llvm-svn: 268095
Summary:
This removes the temporary call to isIntegratedAssemblerRequired() which was
added recently. It's effect is now acheived directly in the MipsTargetStreamer
hierarchy.
Reviewers: sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D19715
llvm-svn: 268058
Correct trivial error. One of the failing tests from PR/27458.
Reviewers: dsanders, vkalintiris, mcrosier
Differential Review: http://reviews.llvm.org/D19726
llvm-svn: 268053
MipsHazardSchedule has to determine what the next physical machine instruction
is to decide whether to insert a nop. In case where a branch with a forbidden
slot appears at the end of a basic block, first *real* instruction of the next
physical basic block was determined using getFirstNonDebugInstr().
Unfortunately this only considers DBG_VALUEs and not other transient opcodes
such as EHLABEL. As EHLABEL passes the SafeInForbiddenSlot predicate and the
instruction after the EHLABEL can be a CTI, we observed test failures in the
LNT testsuite.
Reviewers: dsanders
Differential Review: http://reviews.llvm.org/D19051
llvm-svn: 268052
Summary:
Historically, we had a switch in the Makefiles for turning on "expensive
checks". This has never been ported to the cmake build, but the
(dead-ish) code is still around.
This will also make it easier to turn it on in buildbots.
Reviewers: chandlerc
Subscribers: jyknight, mzolotukhin, RKSimon, gberry, llvm-commits
Differential Revision: http://reviews.llvm.org/D19723
llvm-svn: 268050
Summary:
These instructions can add an immediate offset to the address, like other
ds instructions.
Reviewers: arsenm
Subscribers: arsenm, scchan
Differential Revision: http://reviews.llvm.org/D19233
llvm-svn: 268043
Summary:
The portion in MipsAsmParser is responsible for figuring out which expansion to
use, while the portion in MipsTargetStreamer is responsible for emitting it.
This allows us to remove the call to isIntegratedAssemblerRequired() which is
currently ensuring the effect of .cprestore only occurs when writing objects.
The small functional change is that the memory offsets are now correctly
printed as signed values.
Reviewers: sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D19714
llvm-svn: 268042
Summary:
* Moved all the emit*() helpers to MipsTargetStreamer.
* Moved createNop() to MipsTargetStreamer as emitNop() and emitEmptyDelaySlot().
This instruction has been split to distinguish between the 'nop' instruction
and the nop used in delay slots which is sometimes a different nop to the
'nop' instruction (e.g. for short delay slots on microMIPS).
* Moved createAddu() to MipsTargetStreamer as emitAddu().
* Moved createAppropriateDSLL() to MipsTargetStreamer as emitDSLL().
Reviewers: sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D19712
llvm-svn: 268041
Summary:
The goal is for each operand type to have its own parse function and
at the same time share common code for tracking state as different
instruction types share operand types (e.g. glc/glc_flat, etc).
Introduce parseAMDGPUOperand which can parse any optional operand.
DPP and Clamp/OMod have custom handling for now. Sam also suggested
to have class hierarchy for operand types instead of table. This
can be done in separate change.
Remove parseVOP3OptionalOps, parseDS*OptionalOps, parseFlatOptionalOps,
parseMubufOptionalOps, parseDPPOptionalOps.
Reduce number of definitions of AsmOperand's and MatchClasses' by using common base class.
Rename AsmMatcher/InstPrinter methods accordingly.
Print immediate type when printing parsed immediate operand.
Use 'off' if offset/index register is unused instead of skipping it to make it more readable (also agreed with SP3).
Update tests.
Reviewers: tstellarAMD, SamWot, artem.tamazov
Subscribers: qcolombet, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19584
llvm-svn: 268015
This was being treated the same as private, which has an immediate
offset. For unknown, it probably means it's for a computation not
actually being used for accessing memory, so it should not have a
nontrivial addressing mode.
llvm-svn: 268002
This requirement was a huge hack to keep LiveVariables alive because it
was optionally used by TwoAddressInstructionPass and PHIElimination.
However we have AnalysisUsage::addUsedIfAvailable() which we can use in
those passes.
This re-applies r260806 with LiveVariables manually added to PowerPC to
hopefully not break the stage 2 bots this time.
llvm-svn: 267954
This instruction is just a control flow marker - it should not
actually exist in the object file. Unfortunately, nothing catches
it before it gets to AsmPrinter. If integrated assembler is used,
it's considered to be a normal 4-byte instruction, and emitted as
an all-0 word, crashing the program. With external assembler,
a comment is emitted.
Fixed by setting Size to 0 and handling it in MCCodeEmitter - this
means the comment will still be emitted if integrated assembler
is not used.
This broke an ASan test, which has been disabled for a long time
as a result (see the discussion on D19657). We can reenable it
once this lands.
llvm-svn: 267943
Dead phi nodes are needed for code motion (such as copy propagation),
where a new use would be placed in a location that would be dominated
by a dead phi. Such a transformation is not legal for copy propagation,
and the existence of the phi would prevent it, but if the phi is not
there, it may appear to be valid.
llvm-svn: 267932
Revert "[Power9] Implement add-pc, multiply-add, modulo, extend-sign-shift, random number, set bool, and dfp test significance".
This patch has caused a functional regression in SPEC2k6 namd, and a performance regression in mesa-pipe.
llvm-svn: 267927
The canonical form for allocas is a single allocation of the array type.
In case we see a non-canonical array alloca, make sure we aren't
replacing this with an array N times smaller.
llvm-svn: 267916
Currently Mips::emitAtomicBinaryPartword() does not properly respect the
width of pointers. For MIPS64 this causes the memory address that the ll/sc
sequence uses to be truncated. At runtime this causes a segmentation fault.
This can be fixed by applying similar changes as r266204, so that a full 64bit
pointer is loaded.
Reviewers: dsanders
Differential Review: http://reviews.llvm.org/D19651
llvm-svn: 267900
Summary:
Port rL265480, rL264754, rL265997 and rL266252 to SystemZ, in order to enable the Swift port on the architecture. SwiftSelf and SwiftError are assigned to R10 and R9, respectively, which are normally callee-saved registers. For more information, see:
RFC: Implementing the Swift calling convention in LLVM and Clang
https://groups.google.com/forum/#!topic/llvm-dev/epDd2w93kZ0
Reviewers: kbarton, manmanren, rjmccall, uweigand
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19414
llvm-svn: 267823
For compilations with no explicit cpu specified, this exhibits
nice gains on Silvermont, with neutral performance on big cores.
Differential Revision: http://reviews.llvm.org/D19138
llvm-svn: 267809
The callseq_end node must be glued with the TLS calls, otherwise,
the generic code will miss the uses of the returned value and will
mark it dead.
Moreover, TLSCall 64-bit pseudo must not set an implicit-use on RDI,
the pseudo uses the symbol address at this point not RDI and the
lowering will do the right thing.
llvm-svn: 267797
transferSuccessors() would LoadCmpBB a successor of DoneBB,
whereas it should be a successor of the original MBB.
Follow-up to r266339.
Unfortunately, it's tricky to catch this in the verifier.
llvm-svn: 267779
transferSuccessors() would LoadCmpBB a successor of DoneBB, whereas
it should be a successor of the original MBB.
The testcase changes are caused by Thumb2SizeReduction, which
was previously confused by the broken CFG.
Follow-up to r266679.
Unfortunately, it's tricky to catch this in the verifier.
llvm-svn: 267778
Summary:
Currently the NVVMReflect pass is run at the beginning of our backend
passes. But really, it should be run as early as possible, as it's
simply resolving an "if" statement in code. So copy it into
TargetMachine::addEarlyAsPossiblePasses.
We still run it at the beginning of the backend passes, since it's
needed for correctness when lowering to nvptx.
(Specifically, NVVMReflect changes each call to the __nvvm_reflect
function or llvm.nvvm.reflect intrinsic into an integer constant, based
on the pass's configuration. Clearly we miss many optimization
opportunities if we perform this transformation at the beginning of
codegen.)
Reviewers: rnk
Subscribers: tra, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D18616
llvm-svn: 267765
Added support of TTMP quads.
Reworked M0 exclusion machinery for SMRD and similar instructions
to enable usage of TTMP registers in those instructions as destinations.
Tests added.
Differential Revision: http://reviews.llvm.org/D19342
llvm-svn: 267733
Summary:
So it appears that to guarantee some of the ordering requirements of a GLSL
memoryBarrier() executed in the shader, we need to emit an s_waitcnt.
(We can't use an s_barrier, because memoryBarrier() may appear anywhere in
the shader, in particular it may appear in non-uniform control flow.)
Reviewers: arsenm, mareko, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19203
llvm-svn: 267729
This change adds a new hook for estimating the cost of vector extracts followed
by zero- and sign-extensions. The motivating example for this change is the
SMOV and UMOV instructions on AArch64. These instructions move data from vector
to general purpose registers while performing the corresponding extension
(sign-extend for SMOV and zero-extend for UMOV) at the same time. For these
operations, TargetTransformInfo can assume the extensions are free and only
report the cost of the vector extract. The SLP vectorizer has been updated to
make use of the new hook.
Differential Revision: http://reviews.llvm.org/D18523
llvm-svn: 267725
Possibility to specify code of hardware register kept.
Disassemble to symbolic name, if name is known.
Tests updated/added.
Differential Revision: http://reviews.llvm.org/D19335
llvm-svn: 267724
We run after PEI, so we need to AddPristinesAndCSRs.
In practice, that makes no difference here, because we only ask about
liveness of super-registers of defined GR8/GR16 registers, so they
can't be pristine. Still, it's the correct thing to do.
Thanks to Quentin for noticing!
Follow-up to r267495.
llvm-svn: 267658
This effectively adds back the extractelt combine removed by r262358:
the direct case can still occur (because x86_mmx is special, see
r262446), but it's the indirect case that's now superseded by the
generic combine.
llvm-svn: 267651
the prologue.
Do not use basic blocks that have EFLAGS live-in as prologue if we need
to realign the stack. Realigning the stack uses AND instruction and this
clobbers EFLAGS.
An other alternative would have been to save and restore EFLAGS around
the stack realignment code, but this is likely inefficient.
Fixes PR27531.
llvm-svn: 267634
NVPTXLowerKernelArgs is required for correctness, so it should not be guarded
by CodeGenOpt::None.
NVPTXPeephole is optimization only, so it should be skipped when
CodeGenOpt::None.
llvm-svn: 267619
Support for SDWA instructions for VOP1 and VOP2 encoding.
Not done yet:
- converters for support optional operands and modifiers
- VOPC
- sext() modifier
- intrinsics
- VOP2b (see vop_dpp.s)
- V_MAC_F32 (see vop_dpp.s)
Differential Revision: http://reviews.llvm.org/D19360
llvm-svn: 267553
Handle MachineBasicBlock as a memory displacement operand in the LEA optimization pass.
Differential Revision: http://reviews.llvm.org/D19409
llvm-svn: 267551
print-stack-trace.cc test failure of compiler-rt has been fixed by
r266869 (http://reviews.llvm.org/D19148), so reenable sibling call
optimization on ppc64
Reviewers: nemanjai kbarton
llvm-svn: 267527
Summary:
We don't use MinLatency any more since r184032.
Reviewers: atrick, hfinkel, mcrosier
Differential Revision: http://reviews.llvm.org/D19474
llvm-svn: 267502
Kill-flags, which computeRegisterLiveness uses, are not reliable.
LivePhysRegs is.
Differential Revision: http://reviews.llvm.org/D19472
llvm-svn: 267495
The SparcV8 fneg and fabs instructions interestingly come only in a
single-float variant. Since the sign bit is always the topmost bit no
matter what size float it is, you simply operate on the high
subregister, as if it were a single float.
However, the layout of double-floats in the float registers is reversed
on little-endian CPUs, so that the high bits are in the second
subregister, rather than the first.
Thus, this expansion must check the endianness to use the correct
subregister.
llvm-svn: 267489
log2(Mask) is smaller than 32, we must use the 32-bit variant because the 64-bit
variant cannot encode it. Therefore, set the subreg part accordingly.
[AArch64] Fix optimizeCondBranch logic.
The opcode for the optimized branch does not depend on the size
of the activate bits in the AND masks, but the AND opcode itself.
Indeed, we need to use a X or W variant based on the AND variant
not based on whether the mask fits into the related variant.
Otherwise, we may end up using the W variant of the optimized branch
for 64-bit register inputs!
This fixes the last make check verifier issues for AArch64: PR27479.
llvm-svn: 267465
Use the operand for how long to wait. This is somewhat
distasteful, since it would be better to just emit s_nop
with the right argument in the first place. This would require
changing TII::insertNoop to emit N operands, which would be easy.
Slightly more problematic is the post-RA scheduler and hazard recognizer
represent nops as a single null node, and would require inventing
another way of representing N nops.
llvm-svn: 267456
Previously findClosestSuitableAluInstr was only considering the base register when checking the current instruction for suitability. Expand check to consider the offset if the offset is a register.
llvm-svn: 267424
Commit r266977 was reason for failing LLVM test suite with error message: fatal error: error in backend: Cannot select: t17: i32 = rotr t2, t11 ...
llvm-svn: 267418
Summary:
The expression is detected as a redundant expression.
Turn out, this is probably a bug.
```
/home/etienneb/llvm/llvm/lib/Target/AMDGPU/SIInstrInfo.cpp:306:26: warning: both side of operator are equivalent [misc-redundant-expression]
if (isSMRD(*FirstLdSt) && isSMRD(*FirstLdSt)) {
```
Reviewers: rnk, tstellarAMD
Subscribers: arsenm, cfe-commits
Differential Revision: http://reviews.llvm.org/D19460
llvm-svn: 267415
Summary:
This patch adds support for the X asm constraint.
To do this, we lower the constraint to either a "w" or "r" constraint
depending on the operand type (both constraints are supported on ARM).
Fixes PR26493
Reviewers: t.p.northover, echristo, rengolin
Subscribers: joker.eph, jgreenhalgh, aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D19061
llvm-svn: 267411
ADD8TLS, a variant of add instruction used for initial-exec TLS,
currently accepts r0 as a source register. While add itself supports
r0 just fine, linker can relax it to a local-exec sequence, converting
it to addi - which doesn't support r0.
Differential Revision: http://reviews.llvm.org/D19193
llvm-svn: 267388
This corrects the MI annotations for the stack adjustment following the __chkstk
invocation. We were marking the original SP usage as a Def rather than Kill.
The (new) assigned value is the definition, the original reference is killed.
Adjust the ISelLowering to mark Kills and FrameSetup as well.
This partially resolves PR27480.
llvm-svn: 267361
We aren't currently making use of this in any successful mask decode and its actually incorrect as it inserts the wrong number of SM_SentinelUndef mask elements.
llvm-svn: 267350
Reused the ability to split constants of a type wider than the shuffle mask to work with masks generated from scalar constants transfered to xmm.
This fixes an issue preventing PSHUFB target shuffle masks decoding rematerialized scalar constants and also exposes the XOP VPPERM bug described in PR27472.
llvm-svn: 267343
This fixes PR22248 on s390x. The previous attempt at this was D19101,
which was before LOAD_STACK_GUARD existed. Compared to the previous
version, this always emits a rather ugly block of 4 instructions, involving
a thread pointer load that can't be shared with other potential users.
However, this is necessary for SSP - spilling the guard value (or thread
pointer used to load it) is counter to the goal, since it could be
overwritten along with the frame it protects.
Differential Revision: http://reviews.llvm.org/D19363
llvm-svn: 267340
The original patch caused crashes because it could derefence a null pointer
for SelectionDAGTargetInfo for targets that do not define it.
Evaluates fmul+fadd -> fmadd combines and similar code sequences in the
machine combiner. It adds support for float and double similar to the existing
integer implementation. The key features are:
- DAGCombiner checks whether it should combine greedily or let the machine
combiner do the evaluation. This is only supported on ARM64.
- It gives preference to throughput over latency: the heuristic used is
to combine always in loops. The targets decides whether the machine
combiner should optimize for throughput or latency.
- Supports for fmadd, f(n)msub, fmla, fmls patterns
- On by default at O3 ffast-math
llvm-svn: 267328
The option to control the emission of the new relocations
is -relax-relocations (blatantly copied from GNU as).
It can't be enabled by default because it breaks relatively
recent versions of ld.bfd/ld.gold (late 2015).
llvm-svn: 267307