This attribute, called "objc_externally_retained", exposes clang's
notion of pseudo-__strong variables in ARC. Pseudo-strong variables
"borrow" their initializer, meaning that they don't retain/release
it, instead assuming that someone else is keeping their value alive.
If a function is annotated with this attribute, implicitly strong
parameters of that function aren't implicitly retained/released in
the function body, and are implicitly const. This is useful to expose
for performance reasons, most functions don't need the extra safety
of the retain/release, so programmers can opt out as needed.
This attribute can also apply to declarations of local variables,
with similar effect.
Differential revision: https://reviews.llvm.org/D55865
llvm-svn: 350422
This patch adds #pragma clang loop pipeline and #pragma clang loop pipeline_initiation_interval for debugging or reducing compile time purposes. It is possible to disable SWP for concrete loops to save compilation time or to find bugs by not doing SWP to certain loops. It is possible to set value of initiation interval to concrete number to save compilation time by not doing extra pipeliner passes or to check created schedule for specific initiation interval.
Patch by Alexey Lapshin.
llvm-svn: 350414
Summary:
- This adopts SwiftABIInfo as the base class for WebAssemblyABIInfo, which is in keeping with what is done for other targets for which Swift is supported.
- This is a minimal patch to unblock exploration of WASM support for Swift (https://bugs.swift.org/browse/SR-9307)
Reviewers: rjmccall, sunfish
Reviewed By: rjmccall
Subscribers: ahti, dschuff, sbc100, jgravelle-google, aheejin, cfe-commits
Differential Revision: https://reviews.llvm.org/D56188
llvm-svn: 350372
nvvm_barrier0.
Use runtime functions instead of the direct call to the nvvm intrinsics.
It allows to prevent some dangerous LLVM optimizations, that breaks the
code for the NVPTX target.
llvm-svn: 350328
Summary:
Keeping msan a function pass requires replacing the module level initialization:
That means, don't define a ctor function which calls __msan_init, instead just
declare the init function at the first access, and add that to the global ctors
list.
Changes:
- Pull the actual sanitizer and the wrapper pass apart.
- Add a newpm msan pass. The function pass inserts calls to runtime
library functions, for which it inserts declarations as necessary.
- Update tests.
Caveats:
- There is one test that I dropped, because it specifically tested the
definition of the ctor.
Reviewers: chandlerc, fedor.sergeev, leonardchan, vitalybuka
Subscribers: sdardis, nemanjai, javed.absar, hiraditya, kbarton, bollu, atanasyan, jsji
Differential Revision: https://reviews.llvm.org/D55647
llvm-svn: 350305
r348687 converted [Foo alloc] to objc_alloc(Foo). However the objc runtime method only takes a Class, not an arbitrary pointer.
This makes sure we are messaging a class before we convert these messages.
rdar://problem/46943703
llvm-svn: 350224
'\1'.
'@' can't be used in block descriptors' symbol names since it is
reserved on ELF platforms as a separator between symbol names and symbol
versions.
See the discussion here: https://reviews.llvm.org/D50783.
Differential Revision: https://reviews.llvm.org/D54539
llvm-svn: 350157
We were not emitting a protocol definition while generating the category
method list. This was fine in most cases, because something else in the
library typically referenced any given protocol, but it caused linker
failures if the category was the only reference to a given protocol.
llvm-svn: 350130
We were emitting the null class symbol in the wrong section, which meant
that programs that contained no Objective-C classes would fail to link.
llvm-svn: 350092
This fixes compiler crash when we attempted to compile this code:
extern __device__ int data;
__device__ int data = 1;
Differential Revision: https://reviews.llvm.org/D56033
llvm-svn: 349981
It is faster to directly call the ObjC runtime for methods such as retain/release instead of sending a message to those functions.
Differential Revision: https://reviews.llvm.org/D55869
Reviewed By: rjmccall
llvm-svn: 349952
Since CallExpr::setNumArgs has been removed, it is now possible to store the
callee expression and the argument expressions of CallExpr in a trailing array.
This saves one pointer per CallExpr, CXXOperatorCallExpr, CXXMemberCallExpr,
CUDAKernelCallExpr and UserDefinedLiteral.
Given that CallExpr is used as a base of the above classes we cannot use
llvm::TrailingObjects. Instead we store the offset in bytes from the this pointer
to the start of the trailing objects and manually do the casts + arithmetic.
Some notes:
1.) I did not try to fit the number of arguments in the bit-fields of Stmt.
This leaves some space for future additions and avoid the discussion about
whether x bits are sufficient to hold the number of arguments.
2.) It would be perfectly possible to recompute the offset to the trailing
objects before accessing the trailing objects. However the trailing objects
are frequently accessed and benchmarks show that it is slightly faster to
just load the offset from the bit-fields. Additionally, because of 1),
we have plenty of space in the bit-fields of Stmt.
Differential Revision: https://reviews.llvm.org/D55771
Reviewed By: rjmccall
llvm-svn: 349910
All of the other constructors already take a reference to the AST context.
This avoids calling Decl::getASTContext in most cases. Additionally move
the definition of the constructor from Expr.h to Expr.cpp since it is calling
DeclRefExpr::computeDependence. NFC.
llvm-svn: 349901
Fixes assertion
> Assertion failed: (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"), function cast, file llvm/Support/Casting.h, line 255.
It was triggered by trying to cast `FunctionDecl` to `CXXMethodDecl` as
`CGF.CurCodeDecl` in `CallBaseDtor::Emit`. It was happening because
cleanups were emitted in `ScalarExprEmitter::VisitExprWithCleanups`
after destroying `InlinedInheritingConstructorScope`, so
`CodeGenFunction.CurCodeDecl` didn't correspond to expected cleanup decl.
Fix the assertion by emitting cleanups before leaving
`InlinedInheritingConstructorScope` and changing `CurCodeDecl`.
Test cases based on a patch by Shoaib Meenai.
Fixes PR36748.
rdar://problem/45805151
Reviewers: rsmith, rjmccall
Reviewed By: rjmccall
Subscribers: jkorous, dexonsmith, cfe-commits, smeenai, compnerd
Differential Revision: https://reviews.llvm.org/D55543
llvm-svn: 349848
__builtin_cpu_supports and __builtin_cpu_is use information in __cpu_model to decide cpu features. Before this change, __cpu_model was not declared as dso local. The generated code looks up the address in GOT when reading __cpu_model. This makes it impossible to use these functions in ifunc, because at that time GOT entries have not been relocated. This change makes it dso local.
Differential Revision: https://reviews.llvm.org/D53850
llvm-svn: 349825
Instead of generating llvm.mem.parallel_loop_access metadata, generate
llvm.access.group on instructions and llvm.loop.parallel_accesses on
loops. There is one access group per generated loop.
This is clang part of D52116/r349725.
Differential Revision: https://reviews.llvm.org/D52117
llvm-svn: 349823
Calls to this function are deleted in the ARC optimizer. However when the ARC
optimizer was updated to use intrinsics instead of functions (r349534), the corresponding
clang change (r349535) to use intrinsics missed this one so it wasn't being deleted.
llvm-svn: 349782
Sibling patch to D55855, this emits UADD_SAT/USUB_SAT generic intrinsics for the SSE saturated math intrinsics instead of expanding to a IR code sequence that could be difficult to reassemble.
Differential Revision: https://reviews.llvm.org/D55879
llvm-svn: 349631
Summary:
Some ASM input constraints (e.g., "i" and "n") require immediate values. At O0,
very few code transformations are performed. So if we cannot resolve to an
immediate when emitting the ASM input we shouldn't delay its processing.
Reviewers: rsmith, efriedma
Reviewed By: efriedma
Subscribers: rehana, efriedma, craig.topper, jyknight, cfe-commits
Differential Revision: https://reviews.llvm.org/D55616
llvm-svn: 349561
A map clause with the close map-type-modifier is a hint to
prefer that the variables are mapped using a copy into faster
memory.
Patch by Ahsan Saghir (saghir)
Differential Revision: https://reviews.llvm.org/D55719
llvm-svn: 349551
The special lowering for __builtin_mul_overflow introduced in r320902
fixed an ICE seen when passing mixed-sign operands to the builtin.
This patch extends the special lowering to cover mixed-width, mixed-sign
operands. In a few common scenarios, calls to muloti4 will no longer be
emitted.
This should address the latest comments in PR34920 and work around the
link failure seen in:
https://bugzilla.redhat.com/show_bug.cgi?id=1657544
Testing:
- check-clang
- A/B output comparison with: https://gist.github.com/vedantk/3eb9c88f82e5c32f2e590555b4af5081
Differential Revision: https://reviews.llvm.org/D55843
llvm-svn: 349542
buffer.
Seems to me, nvlink has a bug with the proper support of the weakly
linked symbols. It does not allow to define several shared memory buffer
with the different sizes even with the weak linkage. Instead we always
use 128 bytes buffer to prevent nvlink from the error message emission.
llvm-svn: 349540
This is exactly a "CreateBitCast", so refactor this to get rid of a
'new'.
Note that this slightly changes the test, as the Builder is now
seemingly smart enough to fold one of the bitcasts into the annotation
call.
Change-Id: I1733fb1fdf91f5c9d88651067130b9a4e7b5ab67
llvm-svn: 349506
Summary:
Add an option to initialize automatic variables with either a pattern or with
zeroes. The default is still that automatic variables are uninitialized. Also
add attributes to request uninitialized on a per-variable basis, mainly to disable
initialization of large stack arrays when deemed too expensive.
This isn't meant to change the semantics of C and C++. Rather, it's meant to be
a last-resort when programmers inadvertently have some undefined behavior in
their code. This patch aims to make undefined behavior hurt less, which
security-minded people will be very happy about. Notably, this means that
there's no inadvertent information leak when:
- The compiler re-uses stack slots, and a value is used uninitialized.
- The compiler re-uses a register, and a value is used uninitialized.
- Stack structs / arrays / unions with padding are copied.
This patch only addresses stack and register information leaks. There's many
more infoleaks that we could address, and much more undefined behavior that
could be tamed. Let's keep this patch focused, and I'm happy to address related
issues elsewhere.
To keep the patch simple, only some `undef` is removed for now, see
`replaceUndef`. The padding-related infoleaks are therefore not all gone yet.
This will be addressed in a follow-up, mainly because addressing padding-related
leaks should be a stand-alone option which is implied by variable
initialization.
There are three options when it comes to automatic variable initialization:
0. Uninitialized
This is C and C++'s default. It's not changing. Depending on code
generation, a programmer who runs into undefined behavior by using an
uninialized automatic variable may observe any previous value (including
program secrets), or any value which the compiler saw fit to materialize on
the stack or in a register (this could be to synthesize an immediate, to
refer to code or data locations, to generate cookies, etc).
1. Pattern initialization
This is the recommended initialization approach. Pattern initialization's
goal is to initialize automatic variables with values which will likely
transform logic bugs into crashes down the line, are easily recognizable in
a crash dump, without being values which programmers can rely on for useful
program semantics. At the same time, pattern initialization tries to
generate code which will optimize well. You'll find the following details in
`patternFor`:
- Integers are initialized with repeated 0xAA bytes (infinite scream).
- Vectors of integers are also initialized with infinite scream.
- Pointers are initialized with infinite scream on 64-bit platforms because
it's an unmappable pointer value on architectures I'm aware of. Pointers
are initialize to 0x000000AA (small scream) on 32-bit platforms because
32-bit platforms don't consistently offer unmappable pages. When they do
it's usually the zero page. As people try this out, I expect that we'll
want to allow different platforms to customize this, let's do so later.
- Vectors of pointers are initialized the same way pointers are.
- Floating point values and vectors are initialized with a negative quiet
NaN with repeated 0xFF payload (e.g. 0xffffffff and 0xffffffffffffffff).
NaNs are nice (here, anways) because they propagate on arithmetic, making
it more likely that entire computations become NaN when a single
uninitialized value sneaks in.
- Arrays are initialized to their homogeneous elements' initialization
value, repeated. Stack-based Variable-Length Arrays (VLAs) are
runtime-initialized to the allocated size (no effort is made for negative
size, but zero-sized VLAs are untouched even if technically undefined).
- Structs are initialized to their heterogeneous element's initialization
values. Zero-size structs are initialized as 0xAA since they're allocated
a single byte.
- Unions are initialized using the initialization for the largest member of
the union.
Expect the values used for pattern initialization to change over time, as we
refine heuristics (both for performance and security). The goal is truly to
avoid injecting semantics into undefined behavior, and we should be
comfortable changing these values when there's a worthwhile point in doing
so.
Why so much infinite scream? Repeated byte patterns tend to be easy to
synthesize on most architectures, and otherwise memset is usually very
efficient. For values which aren't entirely repeated byte patterns, LLVM
will often generate code which does memset + a few stores.
2. Zero initialization
Zero initialize all values. This has the unfortunate side-effect of
providing semantics to otherwise undefined behavior, programs therefore
might start to rely on this behavior, and that's sad. However, some
programmers believe that pattern initialization is too expensive for them,
and data might show that they're right. The only way to make these
programmers wrong is to offer zero-initialization as an option, figure out
where they are right, and optimize the compiler into submission. Until the
compiler provides acceptable performance for all security-minded code, zero
initialization is a useful (if blunt) tool.
I've been asked for a fourth initialization option: user-provided byte value.
This might be useful, and can easily be added later.
Why is an out-of band initialization mecanism desired? We could instead use
-Wuninitialized! Indeed we could, but then we're forcing the programmer to
provide semantics for something which doesn't actually have any (it's
uninitialized!). It's then unclear whether `int derp = 0;` lends meaning to `0`,
or whether it's just there to shut that warning up. It's also way easier to use
a compiler flag than it is to manually and intelligently initialize all values
in a program.
Why not just rely on static analysis? Because it cannot reason about all dynamic
code paths effectively, and it has false positives. It's a great tool, could get
even better, but it's simply incapable of catching all uses of uninitialized
values.
Why not just rely on memory sanitizer? Because it's not universally available,
has a 3x performance cost, and shouldn't be deployed in production. Again, it's
a great tool, it'll find the dynamic uses of uninitialized variables that your
test coverage hits, but it won't find the ones that you encounter in production.
What's the performance like? Not too bad! Previous publications [0] have cited
2.7 to 4.5% averages. We've commmitted a few patches over the last few months to
address specific regressions, both in code size and performance. In all cases,
the optimizations are generally useful, but variable initialization benefits
from them a lot more than regular code does. We've got a handful of other
optimizations in mind, but the code is in good enough shape and has found enough
latent issues that it's a good time to get the change reviewed, checked in, and
have others kick the tires. We'll continue reducing overheads as we try this out
on diverse codebases.
Is it a good idea? Security-minded folks think so, and apparently so does the
Microsoft Visual Studio team [1] who say "Between 2017 and mid 2018, this
feature would have killed 49 MSRC cases that involved uninitialized struct data
leaking across a trust boundary. It would have also mitigated a number of bugs
involving uninitialized struct data being used directly.". They seem to use pure
zero initialization, and claim to have taken the overheads down to within noise.
Don't just trust Microsoft though, here's another relevant person asking for
this [2]. It's been proposed for GCC [3] and LLVM [4] before.
What are the caveats? A few!
- Variables declared in unreachable code, and used later, aren't initialized.
This goto, Duff's device, other objectionable uses of switch. This should
instead be a hard-error in any serious codebase.
- Volatile stack variables are still weird. That's pre-existing, it's really
the language's fault and this patch keeps it weird. We should deprecate
volatile [5].
- As noted above, padding isn't fully handled yet.
I don't think these caveats make the patch untenable because they can be
addressed separately.
Should this be on by default? Maybe, in some circumstances. It's a conversation
we can have when we've tried it out sufficiently, and we're confident that we've
eliminated enough of the overheads that most codebases would want to opt-in.
Let's keep our precious undefined behavior until that point in time.
How do I use it:
1. On the command-line:
-ftrivial-auto-var-init=uninitialized (the default)
-ftrivial-auto-var-init=pattern
-ftrivial-auto-var-init=zero -enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang
2. Using an attribute:
int dont_initialize_me __attribute((uninitialized));
[0]: https://users.elis.ugent.be/~jsartor/researchDocs/OOPSLA2011Zero-submit.pdf
[1]: https://twitter.com/JosephBialek/status/1062774315098112001
[2]: https://outflux.net/slides/2018/lss/danger.pdf
[3]: https://gcc.gnu.org/ml/gcc-patches/2014-06/msg00615.html
[4]: 776a0955ef
[5]: http://wg21.link/p1152
I've also posted an RFC to cfe-dev: http://lists.llvm.org/pipermail/cfe-dev/2018-November/060172.html
<rdar://problem/39131435>
Reviewers: pcc, kcc, rsmith
Subscribers: JDevlieghere, jkorous, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D54604
llvm-svn: 349442
pass in the -target-sdk-version to the compiler and backend
This commit adds support for reading the SDKSettings.json file in the Darwin
driver. This file is used by the driver to determine the SDK's version, and it
uses that information to pass it down to the compiler using the new
-target-sdk-version= option. This option is then used to set the appropriate
SDK Version module metadata introduced in r349119.
Note: I had to adjust the two ast tests as the SDKROOT environment variable
on macOS caused SDK version to be picked up for the compilation of source file
but not the AST.
rdar://45774000
Differential Revision: https://reviews.llvm.org/D55673
llvm-svn: 349380
Summary:
This patch adds `__builtin_launder`, which is required to implement `std::launder`. Additionally GCC provides `__builtin_launder`, so thing brings Clang in-line with GCC.
I'm not exactly sure what magic `__builtin_launder` requires, but based on previous discussions this patch applies a `@llvm.invariant.group.barrier`. As noted in previous discussions, this may not be enough to correctly handle vtables.
Reviewers: rnk, majnemer, rsmith
Reviewed By: rsmith
Subscribers: kristina, Romain-Geissler-1A, erichkeane, amharc, jroelofs, cfe-commits, Prazek
Differential Revision: https://reviews.llvm.org/D40218
llvm-svn: 349195
Inlined runtime with the current implementation of the interwarp copy
function leads to the undefined behavior because of the not quite
correct implementation of the barriers. Start using generic
__kmpc_barier function instead of the custom made barriers.
llvm-svn: 349192
Implement options in clang to enable recording the driver command-line
in an ELF section.
Implement a new special named metadata, llvm.commandline, to support
frontends embedding their command-line options in IR/ASM/ELF.
This differs from the GCC implementation in some key ways:
* In GCC there is only one command-line possible per compilation-unit,
in LLVM it mirrors llvm.ident and multiple are allowed.
* In GCC individual options are separated by NULL bytes, in LLVM entire
command-lines are separated by NULL bytes. The advantage of the GCC
approach is to clearly delineate options in the face of embedded
spaces. The advantage of the LLVM approach is to support merging
multiple command-lines unambiguously, while handling embedded spaces
with escaping.
Differential Revision: https://reviews.llvm.org/D54487
Clang Differential Revision: https://reviews.llvm.org/D54489
llvm-svn: 349155
intrin.h had forward declarations for these and lzcntintrin.h had implementations that were only available with -mlzcnt or a -march that supported the lzcnt feature.
For MS compatibility we should always have these builtins available regardless of X86 being the target or the CPU support the lzcnt instruction. The backends should be able to gracefully fallback to something support even if its just shifts and bit ops.
Unfortunately, gcc also implements 2 of the 3 function names here on X86 when lzcnt feature is enabled.
This patch adds builtins for these for MSVC compatibility and drops the forward declarations from intrin.h. To keep the gcc compatibility the two intrinsics that collided have been turned into macros that use the X86 specific builtins with the lzcnt feature check. These macros are only defined when _MSC_VER is not defined. Without them being macros we can get a redefinition error because -ms-extensions doesn't seem to set _MSC_VER but does make the MS builtins available.
Should fix PR40014
Differential Revision: https://reviews.llvm.org/D55677
llvm-svn: 349098
The host-side code can't (and should not) access the values that may
only exist on the device side. E.g. address of a __device__ function
does not exist on the host side as we don't generate the code for it there.
Differential Revision: https://reviews.llvm.org/D55663
llvm-svn: 349087
The DIFile used by the CU is special and distinct from the main source
file. Its directory part specifies what becomes the DW_AT_comp_dir
(the compilation directory), even if the source file was specified
with an absolute path.
To support the .dwo workflow, a valid DW_AT_comp_dir is necessary even
if source files were specified with an absolute path.
llvm-svn: 349065
Address spaces are cast into generic before invoking the constructor.
Added support for a trailing Qualifiers object in FunctionProtoType.
Note: This recommits the previously reverted patch,
but now it is commited together with a fix for lldb.
Differential Revision: https://reviews.llvm.org/D54862
llvm-svn: 349019
The previous assertion was relatively easy to trigger, and likely will
be easy to trigger going forward. EmitDelegateCallArg is relatively
popular.
This cleanly diagnoses PR28299 while I work on a proper solution.
llvm-svn: 348991
__builtin_cpu_supports and __builtin_cpu_is use information in __cpu_model to decide cpu features. Before this change, __cpu_model was not declared as dso local. The generated code looks up the address in GOT when reading __cpu_model. This makes it impossible to use these functions in ifunc, because at that time GOT entries have not been relocated. This change makes it dso local.
Differential Revision: https://reviews.llvm.org/D53850
llvm-svn: 348978
The __builtin_unpredictable implementation is confused by any implicit
casts, which happen in C++. This patch strips those off so that
if/switch statements now work with it in C++.
Change-Id: I73c3bf4f1775cd906703880944f4fcdc29fffb0a
llvm-svn: 348969
Address spaces are cast into generic before invoking the constructor.
Added support for a trailing Qualifiers object in FunctionProtoType.
Differential Revision: https://reviews.llvm.org/D54862
llvm-svn: 348927
for the DICompileUnit.
This addresses post-commit feedback for D55085. Without this patch, a
main source file with an absolute paths may appear in different
DIFiles, once with the absolute path and once with the common prefix
between the absolute path and the current working directory.
Differential Revision: https://reviews.llvm.org/D55519
llvm-svn: 348865
Summary:
If a function argument is byval and RV is located in default or alloca address space
an optimization of creating addrspacecast instead of memcpy is performed. That is
not correct for OpenCL, where that can lead to a situation of address space casting
from __private * to __global *. See an example below:
```
typedef struct {
int x;
} MyStruct;
void foo(MyStruct val) {}
kernel void KernelOneMember(__global MyStruct* x) {
foo (*x);
}
```
for this code clang generated following IR:
...
%0 = load %struct.MyStruct addrspace(1)*, %struct.MyStruct addrspace(1)**
%x.addr, align 4
%1 = addrspacecast %struct.MyStruct addrspace(1)* %0 to %struct.MyStruct*
...
So the optimization was disallowed for OpenCL if RV is located in an address space
different than that of the argument (0).
Reviewers: yaxunl, Anastasia
Reviewed By: Anastasia
Subscribers: cfe-commits, asavonic
Differential Revision: https://reviews.llvm.org/D54947
llvm-svn: 348752
The addcarry and addcarryx builtins do the same thing. The only difference is that addcarryx previously required adx feature.
This commit removes the adx feature check from addcarryx and removes the addcarry builtin. This matches the builtins that gcc has. We don't guarantee compatibility in builtins, but we generally try to be consistent if its not a burden.
llvm-svn: 348738
It is faster to directly call the ObjC runtime for methods such as alloc/allocWithZone instead of sending a message to those functions.
This patch adds support for converting messages to alloc/allocWithZone to their equivalent runtime calls.
Tests included for the positive case of applying this transformation, negative tests that we ensure we only convert "alloc" to objc_alloc, not "alloc2", and also a driver test to ensure we enable this only for supported runtime versions.
Reviewed By: rjmccall
https://reviews.llvm.org/D55349
llvm-svn: 348687
Inline cpu_specific versions referenced before the cpu_dispatch function
weren't properly emitted, since they hadn't been referred to. This
patch ensures that during resolver generation that all appropriate
versions are emitted.
Change-Id: I94c3766aaf9c75ca07a0ad8258efdbb834654ff8
llvm-svn: 348600
Thunks that return member pointers via sret are broken due to using temporary
storage for the return value on the stack and then passing that pointer to a
tail call, violating the rule that a tail call can't access allocas in the
caller (see bug).
Since r90526, we put aggregate return values directly in the sret slot, but
this doesn't apply to member pointers which are considered scalar.
Unless I'm missing something subtle, we should be able to always use the sret
slot directly for indirect return values.
Differential revision: https://reviews.llvm.org/D55371
llvm-svn: 348569
This reverts commit r348280 and reapplies D55085 without modifications.
Original commit message:
Avoid emitting redundant or unusable directories in DIFile metadata entries.
As discussed on llvm-dev recently, Clang currently emits redundant
directories in DIFile entries, such as
.file 1 "/Volumes/Data/llvm" "/Volumes/Data/llvm/tools/clang/test/CodeGen/debug-info-abspath.c"
This patch looks at any common prefix between the compilation
directory and the (absolute) file path and strips the redundant
part. More importantly it leaves the compilation directory empty if
the two paths have no common prefix.
After this patch the above entry is (assuming a compilation dir of "/Volumes/Data/llvm/_build"):
.file 1 "/Volumes/Data/llvm" "tools/clang/test/CodeGen/debug-info-abspath.c"
When building the FileCheck binary with debug info, this patch makes
the build artifacts ~1kb smaller.
Differential Revision: https://reviews.llvm.org/D55085
llvm-svn: 348513
If the array section is based on pointer and this sections is mapped in
target region + then it is used in the inner parallel region, it also
must be globalized as the pointer itself is passed by value, not by
reference.
llvm-svn: 348492
This adds a callback to PrintingPolicy to allow CGDebugInfo to remap
file paths according to -fdebug-prefix-map. Otherwise the debug info
(particularly function names for C++ lambdas) may contain paths that
should have been remapped in the debug info.
<rdar://problem/46128056>
Differential Revision: https://reviews.llvm.org/D55137
llvm-svn: 348397
This reverts commit r348154 and follow-up commits r348211 and r3248213.
Reason: the original commit broke compiler-rt tests and a follow-up fix
(r348203) broke our integrate and was reverted.
llvm-svn: 348280
Critical regions in NVPTX are the constructs, which, generally speaking,
are not supported by the NVPTX target. Instead we're using special
technique to handle the critical regions. Currently they are supported
only within the loop and all the threads in the loop must execute the
same critical region.
Inside of this special regions the regions still must be emitted as
critical, to avoid possible data races between the teams +
synchronization must use __kmpc_barrier functions.
llvm-svn: 348272
__kmpc_barrier runtime functions must be marked as convergent to prevent
some dangerous optimizations. Also, for NVPTX target all barriers must
be emitted as simple barriers.
llvm-svn: 348271
As discussed on llvm-dev recently, Clang currently emits redundant
directories in DIFile entries, such as
.file 1 "/Volumes/Data/llvm" "/Volumes/Data/llvm/tools/clang/test/CodeGen/debug-info-abspath.c"
This patch looks at any common prefix between the compilation
directory and the (absolute) file path and strips the redundant
part. More importantly it leaves the compilation directory empty if
the two paths have no common prefix.
After this patch the above entry is (assuming a compilation dir of "/Volumes/Data/llvm/_build"):
.file 1 "/Volumes/Data/llvm" "tools/clang/test/CodeGen/debug-info-abspath.c"
When building the FileCheck binary with debug info, this patch makes
the build artifacts ~1kb smaller.
Differential Revision: https://reviews.llvm.org/D55085
llvm-svn: 348154
This adds a callback to PrintingPolicy to allow CGDebugInfo to remap
file paths according to -fdebug-prefix-map. Otherwise the debug info
(particularly function names for C++ lambdas) may contain paths that
should have been remapped in the debug info.
<rdar://problem/46128056>
Differential Revision: https://reviews.llvm.org/D55137
llvm-svn: 348060
It seems the two failing tests can be simply fixed after r348037
Fix 3 cases in Analysis/builtin-functions.cpp
Delete the bad CodeGen/builtin-constant-p.c for now
llvm-svn: 348053
Kept the "indirect_builtin_constant_p" test case in test/SemaCXX/constant-expression-cxx1y.cpp
while we are investigating why the following snippet fails:
extern char extern_var;
struct { int a; } a = {__builtin_constant_p(extern_var)};
llvm-svn: 348039
This patch passes -fdebug-prefix-map (a feature for renaming source
paths in the debug info) through to the per-module codegen options and
adds the debug prefix map to the module hash.
<rdar://problem/46045865>
Differential Revision: https://reviews.llvm.org/D55037
llvm-svn: 347926
Summary: This patch adds a new runtime for the SPMD deinit kernel function which replaces the previous function. The new function takes as argument the flag which signals whether the runtime is required or not. This enables the compiler to optimize out the part of the deinit function which are not needed.
Reviewers: ABataev, caomhin
Reviewed By: ABataev
Subscribers: jholewinski, guansong, cfe-commits
Differential Revision: https://reviews.llvm.org/D54970
llvm-svn: 347915
Summary:
The is the clang side of the fix in D55047, to handle the case where
two different modules have local variables with the same GUID because
they had the same source file name at compilation time. Allow multiple
symbols with the same GUID to be imported, and test that this case works
with the distributed backend path.
Depends on D55047.
Reviewers: evgeny777
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D55048
llvm-svn: 347887
Function calls without a !dbg location inside a function that has a
DISubprogram make it impossible to construct inline information and
are rejected by the verifier. This patch ensures that sanitizer check
function calls have a !dbg location, by carrying forward the location
of the preceding instruction or by inserting an artificial location if
necessary.
This fixes a crash when compiling the attached testcase with -Os.
rdar://problem/45311226
Differential Revision: https://reviews.llvm.org/D53459
Note: This reapllies r344915, modified to reuse the IRBuilder's
DebugLoc if one exists instead of picking the one from CGDebugInfo
since the latter may get reset when emitting thunks such as block
helpers in the middle of emitting another function.
llvm-svn: 347810
Declarations without the attribute were disallowed because it would be
ambiguous which 'target' it was supposed to be on. For example:
void ___attribute__((target("v1"))) foo();
void foo(); // Redecl of above, or fwd decl of below?
void ___attribute__((target("v2"))) foo();
However, a first declaration doesn't have that problem, and erroring
prevents it from working in cases where the forward declaration is
useful.
Additionally, a forward declaration of target==default wouldn't properly
cause multiversioning, so this patch fixes that.
The patch was not split since the 'default' fix would require
implementing the same check for that case, followed by undoing the same
change for the fwd-decl implementation.
Change-Id: I66f2c5bc2477bcd3f7544b9c16c83ece257077b0
llvm-svn: 347805
There is no reason to emit coverage mappings for artificial statements
contained within defaulted methods, as these statements are not visible
to users.
Only emit a mapping for the body of the defaulted method (clang treats
the text of the "default" keyword as the body when reporting locations).
This allows users to see how often the default method is called, but
trims down the coverage mapping by skipping visitation of the children
of the method.
The immediate motivation for this change is that the lexer's
getPreciseTokenLocEnd API cannot return the correct location when given
an artificial statement (with a somewhat made-up location) as an input.
Test by Orivej Desh!
Fixes llvm.org/PR39822.
llvm-svn: 347803
This was reverted in r347656 due to me thinking it caused a miscompile of
Chromium. Turns out it was the Chromium code that was broken.
llvm-svn: 347756
struct LoopHint was only used within Parse and not in any of the Sema or
Codegen files. In the non-Parse files where it was included, it either wasn't
used or LoopHintAttr was used, so its inclusion did nothing.
llvm-svn: 347728
Summary:
Resubmit this with no changes because I think the build was broken
by a different diff.
-----
The prior diff had to be reverted because there were two tests
that failed. I updated the two tests in this diff
clang/test/Misc/pragma-attribute-supported-attributes-list.test
clang/test/SemaCXX/attr-speculative-load-hardening.cpp
----- Summary from Previous Diff (Still Accurate) -----
LLVM IR already has an attribute for speculative_load_hardening. Before
this commit, when a user passed the -mspeculative-load-hardening flag to
Clang, every function would have this attribute added to it. This Clang
attribute will allow users to opt into SLH on a function by function basis.
This can be applied to functions and Objective C methods.
Reviewers: chandlerc, echristo, kristof.beyls, aaron.ballman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54915
llvm-svn: 347701
Summary:
This fixes a miscompile where we'd emit a VTT for a class that ends up
referencing an inline virtual member function that we can't actually
emit a body for (because we never instantiated it in the current TU),
which in a corner case of a corner case can lead to link errors.
Reviewers: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D54768
llvm-svn: 347692
This caused a miscompile in Chrome (see crbug.com/908372) that's
illustrated by this small reduction:
static bool f(int *a, int *b) {
return !__builtin_constant_p(b - a) || (!(b - a));
}
int arr[] = {1,2,3};
bool g() {
return f(arr, arr + 3);
}
$ clang -O2 -S -emit-llvm a.cc -o -
g() should return true, but after r347417 it became false for some reason.
This also reverts the follow-up commits.
r347417:
> Re-Reinstate 347294 with a fix for the failures.
>
> Don't try to emit a scalar expression for a non-scalar argument to
> __builtin_constant_p().
>
> Third time's a charm!
r347446:
> The result of is.constant() is unsigned.
r347480:
> A __builtin_constant_p() returns 0 with a function type.
r347512:
> isEvaluatable() implies a constant context.
>
> Assume that we're in a constant context if we're asking if the expression can
> be compiled into a constant initializer. This fixes the issue where a
> __builtin_constant_p() in a compound literal was diagnosed as not being
> constant, even though it's always possible to convert the builtin into a
> constant.
r347531:
> A "constexpr" is evaluated in a constant context. Make sure this is reflected
> if a __builtin_constant_p() is a part of a constexpr.
llvm-svn: 347656
until I figure out why the build is failing or timing out
***************************
Summary:
The prior diff had to be reverted because there were two tests
that failed. I updated the two tests in this diff
clang/test/Misc/pragma-attribute-supported-attributes-list.test
clang/test/SemaCXX/attr-speculative-load-hardening.cpp
LLVM IR already has an attribute for speculative_load_hardening. Before
this commit, when a user passed the -mspeculative-load-hardening flag to
Clang, every function would have this attribute added to it. This Clang
attribute will allow users to opt into SLH on a function by function
basis.
This can be applied to functions and Objective C methods.
Reviewers: chandlerc, echristo, kristof.beyls, aaron.ballman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54915
This reverts commit a5b3c232d1e3613f23efbc3960f8e23ea70f2a79.
(r347617)
llvm-svn: 347628
Summary:
The prior diff had to be reverted because there were two tests
that failed. I updated the two tests in this diff
clang/test/Misc/pragma-attribute-supported-attributes-list.test
clang/test/SemaCXX/attr-speculative-load-hardening.cpp
----- Summary from Previous Diff (Still Accurate) -----
LLVM IR already has an attribute for speculative_load_hardening. Before
this commit, when a user passed the -mspeculative-load-hardening flag to
Clang, every function would have this attribute added to it. This Clang
attribute will allow users to opt into SLH on a function by function basis.
This can be applied to functions and Objective C methods.
Reviewers: chandlerc, echristo, kristof.beyls, aaron.ballman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54915
llvm-svn: 347617
Summary:
LLVM IR already has an attribute for speculative_load_hardening. Before
this commit, when a user passed the -mspeculative-load-hardening flag to
Clang, every function would have this attribute added to it. This Clang
attribute will allow users to opt into SLH on a function by function basis.
This can be applied to functions and Objective C methods.
Reviewers: chandlerc, echristo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54555
llvm-svn: 347586
modes.
If the region is inside target|teams|distribute region, we can emit the
locations with the correct info for execution mode and runtime mode.
Patch adds this ability to the NVPTX codegen to help the optimizer to
produce better code.
llvm-svn: 347583
This was originally part of:
D50924
and should resolve PR37387:
https://bugs.llvm.org/show_bug.cgi?id=37387
...but it was reverted because some bots using a gcc host compiler
would crash for unknown reasons with this included in the patch.
Trying again now to see if that's still a problem.
llvm-svn: 347527
For the NVPTX target default locations should be emitted as constants +
additional info must be emitted in the reserved_2 field of the ident_t
structure. The 1st bit controls the execution mode and the 2nd bit
controls use of the lightweight runtime. The combination of the bits for
Non-SPMD mode + lightweight runtime represents special undefined mode,
used outside of the target regions for orphaned directives or functions.
Should allow and additional optimization inside of the target regions.
llvm-svn: 347425
Summary:
A __builtin_constant_p may end up with a constant after inlining. Use
the is.constant intrinsic if it's a variable that's in a context where
it may resolve to a constant, e.g., an argument to a function after
inlining.
Reviewers: rsmith, shafik
Subscribers: jfb, kristina, cfe-commits, nickdesaulniers, jyknight
Differential Revision: https://reviews.llvm.org/D54355
llvm-svn: 347294
popRegions used to assume that the start location of a region can't be
nested deeper than the end location, which is not always true.
Patch by Orivej Desh!
Differential Revision: https://reviews.llvm.org/D53244
llvm-svn: 347262
Summary:
As reported by @regehr (thanks!) on twitter (https://twitter.com/johnregehr/status/1057681496255815686),
we (me) has completely forgot about the binary assignment operator.
In AST, it isn't represented as separate `ImplicitCastExpr`'s,
but as a single `CompoundAssignOperator`, that does all the casts internally.
Which means, out of these two, only the first one is diagnosed:
```
auto foo() {
unsigned char c = 255;
c = c + 1;
return c;
}
auto bar() {
unsigned char c = 255;
c += 1;
return c;
}
```
https://godbolt.org/z/JNyVc4
This patch does handle the `CompoundAssignOperator`:
```
int main() {
unsigned char c = 255;
c += 1;
return c;
}
```
```
$ ./bin/clang -g -fsanitize=integer /tmp/test.c && ./a.out
/tmp/test.c:3:5: runtime error: implicit conversion from type 'int' of value 256 (32-bit, signed) to type 'unsigned char' changed the value to 0 (8-bit, unsigned)
#0 0x2392b8 in main /tmp/test.c:3:5
#1 0x7fec4a612b16 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x22b16)
#2 0x214029 in _start (/build/llvm-build-GCC-release/a.out+0x214029)
```
However, the pre/post increment/decrement is still not handled.
Reviewers: rsmith, regehr, vsk, rjmccall, #sanitizers
Reviewed By: rjmccall
Subscribers: mclow.lists, cfe-commits, regehr
Tags: #clang, #sanitizers
Differential Revision: https://reviews.llvm.org/D53949
llvm-svn: 347258
This will hold flags specific to subprograms. In the future
we could potentially free up scarce bits in DIFlags by moving
subprogram-specific flags from there to the new flags word.
This patch does not change IR/bitcode formats, that will be
done in a follow-up.
Differential Revision: https://reviews.llvm.org/D54597
llvm-svn: 347239
Summary:
the previous patch (https://reviews.llvm.org/rC346642) has been reverted because of test failure under windows.
So this patch fix the test cfe/trunk/test/CodeGen/code-coverage-filter.c.
Reviewers: marco-c
Reviewed By: marco-c
Subscribers: cfe-commits, sylvestre.ledru
Differential Revision: https://reviews.llvm.org/D54600
llvm-svn: 347144
reductions.
Fixed previously committed code for the reduction support in
teams/parallel constructs taking into account new design of the NVPTX
support in the compiler. Teams reduction are not fully functional yet,
it is going to be fixed in the following patches.
llvm-svn: 347081
Summary:
Experience has shown that the functionality is useful. It makes linking
optimized clang with debug info for me a lot faster, 20s to 13s. The
type merging phase of PDB writing goes from 10s to 3s.
This removes the LLVM cl::opt and replaces it with a metadata flag.
After this change, users can do the following to use ghash:
- add -gcodeview-ghash to compiler flags
- replace /DEBUG with /DEBUG:GHASH in linker flags
Reviewers: zturner, hans, thakis, takuto.ikuta
Subscribers: aprantl, hiraditya, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D54370
llvm-svn: 347072
Added references to the addr spaces deduction and enabled
CL2.0 features (program scope variables and storage class
qualifiers) to work in C++ mode too.
Fixed several address space conversion issues in CodeGen
for references.
Differential Revision: https://reviews.llvm.org/D53764
llvm-svn: 347059
Summary: The name of the synthesized constants for constant initialization was using mangling for statics, which isn't generally correct and (in a yet-uncommitted patch) causes the mangler to assert out because the static ends up trying to mangle function parameters and this makes no sense. Instead, mangle to `"__const." + FunctionName + "." + DeclName`.
Reviewers: rjmccall
Subscribers: dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D54055
llvm-svn: 346915
The DWARF5 specification says(Appendix F.1):
"The sections that do not require relocation, however, can be
written to the relocatable object (.o) file but ignored by the
linker or they can be written to a separate DWARF object (.dwo)
file that need not be accessed by the linker."
The first part describes a single file split DWARF feature and there
is no way to trigger this behavior atm.
Fortunately, no many changes are required to keep *.dwo sections
in a .o, the patch does that.
Differential revision: https://reviews.llvm.org/D52296
llvm-svn: 346837
Summary:
This saves a lot of relocations in optimized object files (at the cost
of some cost/increase in linked executable bytes), but gold's 32 bit
gdb-index support has a bug (
https://sourceware.org/bugzilla/show_bug.cgi?id=21894 ) so we can't
switch to this unconditionally. (& even if it weren't for that bug, one
might argue that some users would want to optimize in one direction or
the other - prioritizing object size or linked executable size)
Differential Revision: https://reviews.llvm.org/D54243
llvm-svn: 346789
As suggested by Richard Smith, and initially put up for review here:
https://reviews.llvm.org/D53341, this patch removes a hack that was used
to ensure that proper target-feature lists were used when emitting
cpu-dispatch (and eventually, target-clones) implementations. As a part
of this, the GlobalDecl object is proliferated to a bunch more
locations.
Originally, this was put up for review (see above) to get acceptance on
the approach, though discussion with Richard in San Diego showed he
approved of the approach taken here. Thus, I believe this is acceptable
for Review-After-commit
Differential Revision: https://reviews.llvm.org/D53341
Change-Id: I0a0bd673340d334d93feac789d653e03d9f6b1d5
llvm-svn: 346757
Summary:
These options are taking regex separated by colons to filter files.
- if both are empty then all files are instrumented
- if -fprofile-filter-files is empty then all the filenames matching any of the regex from exclude are not instrumented
- if -fprofile-exclude-files is empty then all the filenames matching any of the regex from filter are instrumented
- if both aren't empty then all the filenames which match any of the regex in filter and which don't match all the regex in filter are instrumented
- this patch is a follow-up of https://reviews.llvm.org/D52033
Reviewers: marco-c, vsk
Reviewed By: marco-c, vsk
Subscribers: cfe-commits, sylvestre.ledru
Differential Revision: https://reviews.llvm.org/D52034
llvm-svn: 346642
Summary:
Class with no user-defined destructor that has an inherited member that has a
non-trivial destructor and a non-default constructor will attempt to emit a
destructor despite being marked as __attribute((no_destroy)) in which case it
would trigger an assertion due to an incorrect assumption.
In addition this adds missing test coverage for IR generation for no_destroy.
(Note that here use of no_destroy is synonymous with its global flag
counterpart `-fno-c++-static-destructors` being enabled)
Differential Revision: https://reviews.llvm.org/D54344
llvm-svn: 346628
Fix places where the return type of a FunctionDecl was being used in
place of the function type
FunctionDecl::Create() takes as its T parameter the type of function
that should be created, not the return type. Passing in the return type
looks to have been copypasta'd around a bit, but the number of correct
usages outweighs the incorrect ones so I've opted for keeping what T is
the same and fixing up the call sites instead.
This fixes a crash in Clang when attempting to compile the following
snippet of code with -fblocks -fsanitize=function -x objective-c++ (my
original repro case):
void g(void(^)());
void f()
{
__block int a = 0;
g(^(){ a++; });
}
as well as the following which only requires -fsanitize=function -x c++:
void f(char * buf)
{
__builtin_os_log_format(buf, "");
}
Patch by: Ben (bobsayshilol)
Differential revision: https://reviews.llvm.org/D53263
llvm-svn: 346601
If the statements between target|teams|distribute directives does not
require execution in master thread, like constant expressions, null
statements, simple declarations, etc., such construct can be xecuted in
SPMD mode.
llvm-svn: 346551
r344915 added a call to ApplyDebugLocation to the sanitizer check
function emitter. Some of the sanitizers are emitted in the function
epilogue though and the LexicalScopeStack is emptied out before. By
detecting this situation and early-exiting from ApplyDebugLocation the
fallback location is used, which is equivalent to the return location.
rdar://problem/45859802
........
Causes EXPENSIVE_CHECKS build bot failures: http://lab.llvm.org:8011/builders/llvm-clang-x86_64-expensive-checks-win
llvm-svn: 346549
When we cast a function pointer to an int pointer, at some pointer later
it gets bitcasted back to a function and called.
In backends that have a nonzero program memory address space specified
in the data layout, the old code would lose the address space data. When
LLVM later attempted to generate the bitcast from i8* to i8(..)*
addrspace(1), it would fail because the pointers are not in the same
address space.
With this patch, the address space of the function will carry on to the
address space of the i8* pointer. This is because all function pointers
in Harvard architectures need to be assigned to the correct address
space.
This has no effect to any in-tree backends except AVR.
llvm-svn: 346548
The artificial variable describing the array size is supposed to be
called "__vla_expr", but this was implemented by retrieving the name
of the associated alloca, which isn't a reliable source for the name,
since nonassert compilers may drop names from LLVM IR.
rdar://problem/45924808
llvm-svn: 346542
This patch modifies clang so that, if compiling for a target that
explicitly specifies a nonzero program memory address space, the
constructor list global will have the same address space as the
functions it contains.
AVR is the only in-tree backend which has a nonzero program memory
address space.
Without this, the IR verifier would always fail if a constructor
was used on a Harvard architecture backend.
This has no functional change to any in-tree backends except AVR.
llvm-svn: 346520
target|teams|distribute variables.
If the total size of the variables, declared in target|teams|distribute
regions, is less than the maximal size of shared memory available, the
buffer is allocated in the shared memory.
llvm-svn: 346507
Summary:
Compound literals, enums, file-scoped arrays, etc. require their
initializers and size specifiers to be constant. Wrap the initializer
expressions in a ConstantExpr so that we can easily check for this later
on.
Reviewers: rsmith, shafik
Reviewed By: rsmith
Subscribers: cfe-commits, jyknight, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D53921
llvm-svn: 346455
r344915 added a call to ApplyDebugLocation to the sanitizer check
function emitter. Some of the sanitizers are emitted in the function
epilogue though and the LexicalScopeStack is emptied out before. By
detecting this situation and early-exiting from ApplyDebugLocation the
fallback location is used, which is equivalent to the return location.
rdar://problem/45859802
llvm-svn: 346454
Coerced load/stores through memory do not take into account potential
address space differences when it creates its bitcasts.
Patch by David Salinas.
Differential Revision: https://reviews.llvm.org/D53780
llvm-svn: 346413
The base pointer for the lambda mapping must point to the lambda capture
placement and pointer must point to the captured variable itself. Patch
fixes this problem.
llvm-svn: 346408
Fixed lookup for the target regions in unused virtual functions + fixed
processing of the global variables not marked as declare target but
emitted during debug info emission.
llvm-svn: 346343
This patch breaks Index/opencl-types.cl LIT test:
Script:
--
: 'RUN: at line 1'; stage1/bin/c-index-test -test-print-type llvm/tools/clang/test/Index/opencl-types.cl -cl-std=CL2.0 | stage1/bin/FileCheck llvm/tools/clang/test/Index/opencl-types.cl
--
Command Output (stderr):
--
llvm/tools/clang/test/Index/opencl-types.cl:3:26: warning: unsupported OpenCL extension 'cl_khr_fp16' - ignoring [-Wignored-pragmas]
llvm/tools/clang/test/Index/opencl-types.cl:4:26: warning: unsupported OpenCL extension 'cl_khr_fp64' - ignoring [-Wignored-pragmas]
llvm/tools/clang/test/Index/opencl-types.cl:8:9: error: use of type 'double' requires cl_khr_fp64 extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:11:8: error: declaring variable of type 'half' is not allowed
llvm/tools/clang/test/Index/opencl-types.cl:15:3: error: use of type 'double' requires cl_khr_fp64 extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:16:3: error: use of type 'double4' (vector of 4 'double' values) requires cl_khr_fp64 extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:26:26: warning: unsupported OpenCL extension 'cl_khr_gl_msaa_sharing' - ignoring [-Wignored-pragmas]
llvm/tools/clang/test/Index/opencl-types.cl:35:44: error: use of type '__read_only image2d_msaa_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:36:49: error: use of type '__read_only image2d_array_msaa_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:37:49: error: use of type '__read_only image2d_msaa_depth_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:38:54: error: use of type '__read_only image2d_array_msaa_depth_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm-svn: 346338
A mask type is a 1 to 8-byte string that follows the "mask." annotation
in the format string. This enables obfuscating data in the event the
provided privacy level isn't enabled.
rdar://problem/36756282
llvm-svn: 346211
This is fifth in a series of patches to move intrinsic definitions out of intrin.h.
Note: This was reviewed and approved in D54065 but somehow that diff was messed
up. Committing this again with the proper diff.
llvm-svn: 346205