Narrow Scalar G_MUL for MIPS32.
Revisit NarrowScalar implementation in LegalizerHelper.
Introduce new helper function multiplyRegisters.
It performs generic multiplication of values held in multiple registers.
Generated instructions use only types NarrowTy and i1.
Destination can be same or two times size of the source.
Differential Revision: https://reviews.llvm.org/D58824
llvm-svn: 355814
Try to use concat_vectors. Also remove unnecessary assert on
pointers. Fixes asserting for <4 x s16> operations and 64-bit pointers
for AMDGPU.
llvm-svn: 354828
For AMDGPU, if an operand requires an SGPR but is only available as a
VGPR, a loop needs to be introduced to execute the instruction with
each unique combination of values across all lanes. The rest of the
instructions in the block will be moved to a new block following the
loop. Check if the next instruction's parent changed, and update the
iterators and insertion block if this happened.
Tests will be included in a future patch.
llvm-svn: 354591
Legalize/select llvm.ctlz.*
Add select-ctlz to show that we actually select them. Update arm64-clrsb.ll and
arm64-vclz.ll to show that we perform valid transformations in optimized builds,
and document where GISel can improve.
Differential Revision: https://reviews.llvm.org/D58155
llvm-svn: 354299
https://reviews.llvm.org/D58073
Speed up insertion during the initial populating phase into the
GISelWorkList by deferring repeatedly resizing the DenseMap.
This results in ~10% improvement in the combiner passes, and
~3% speedup in the Legalizer.
reviewed by: aemerson.
llvm-svn: 354093
Select G_BR and G_BRCOND for MIPS32.
Unconditional branch G_BR does not have register operand,
for that reason we only add tests.
Since conditional branch G_BRCOND compares register to zero on MIPS32,
explicit extension must be performed on i1 condition in order to set
high bits to appropriate value.
Differential Revision: https://reviews.llvm.org/D58182
llvm-svn: 354022
Summary:
The declarative tablegen definitions split rules into match and apply steps.
Prepare for that by doing the same in the C++ implementations. This aids
some of the migration effort while the tablegen version is incomplete.
Reviewers: bogner, volkan, aditya_nandakumar, paquette, aemerson
Reviewed By: aditya_nandakumar
Subscribers: rovka, kristof.beyls, Petar.Avramovic, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58150
llvm-svn: 353996
Instead of only having this code work for unary intrinsics, have it work for
an arbitrary number of parameters.
Factor out the cases that fall under this (fma, pow).
This makes it a bit easier to add more intrinsics which don't require any
special work.
Differential Revision: https://reviews.llvm.org/D58079
llvm-svn: 353863
This teaches the IRTranslator to emit G_BSWAP when it runs into
Intrinsic::bswap. This allows us to select G_BSWAP for non-vector types in
AArch64.
Add a select-bswap.mir test, and add global isel checks to a couple existing
tests in test/CodeGen/AArch64.
This doesn't handle every bswap case, since some of these rely on known bits
stuff. This just lets us handle the naive case.
Differential Revision: https://reviews.llvm.org/D58081
llvm-svn: 353861
This teaches the legalizer about G_FFLOOR, and lets us select G_FFLOOR in
AArch64.
It updates the existing floating point tests, and adds a select-floor.mir test.
Differential Revision: https://reviews.llvm.org/D57486
llvm-svn: 353722
After the changes introduced in r353586, this instruction doesn't cause any
issues for any backend.
Original review: https://reviews.llvm.org/D57485
llvm-svn: 353720
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
Make behavior of G_LOAD in widenScalar same as for G_ZEXTLOAD and
G_SEXTLOAD. That is perform widenScalarDst to size given by the target
and avoid additional checks in common code. Targets can reorder or add
additional rules in LegalizeRuleSet for the opcode to achieve desired
behavior.
Select extending load that does not have specified type of extension
into zero extending load.
Select truncating store that stores number of bytes indicated by size
in MachineMemoperand.
Differential Revision: https://reviews.llvm.org/D57454
llvm-svn: 353520
This is pretty much directly ported from SelectionDAG. Doesn't include
the shift by non-constant but known bits version, since there isn't a
globalisel version of computeKnownBits yet.
This shows a disadvantage of targets not specifically which type
should be used for the shift amount. If type 0 is legalized before
type 1, the operations on the shift amount type use the wider type
(which are also less likely to legalize). This can be avoided by
targets specifying legalization actions on type 1 earlier than for
type 0.
llvm-svn: 353455
Introduce a new function which handles instructions with multiple type
indices, but have the same number of vector elements.
Also legalize v2s16 shifts when applicable.
llvm-svn: 353432
There was a lot of repeated code wrt unary math intrinsics in
translateKnownIntrinsic. This factors out the repeated MIRBuilder code into
two functions: translateSimpleUnaryIntrinsic and getSimpleUnaryIntrinsicOpcode.
This simplifies adding simple unary intrinsics, since after this, all you have
to do is add the mapping to SimpleUnaryIntrinsicOpcodes.
Differential Revision: https://reviews.llvm.org/D57774
llvm-svn: 353316
The fewerElementsVectors implementation for load/stores
handles the scalar reduction case just as well, so drop
the redundant code in narrowScalar. This also introduces
support for narrowing irregular size breakdowns for
scalars.
llvm-svn: 353125
Don't handle vector conditions.
I think this can be merged in the future with
fewerElementsVectorSelect, although this becomes slightly tricky with
a vector condition.
llvm-svn: 353122
Try to use the underlying source registers.
This enables legalization in more cases where some irregular
operations are widened and others narrowed.
This seems to make the test_combines_2 AArch64 test worse, since the
MERGE_VALUES has multiple uses. Since this should be required for
legalization, a hasOneUse check is probably inappropriate (or maybe
should only be used if the merge is legal?).
llvm-svn: 353121
This fixes two problems with CSE done in buildConstant. First, this
would hit an assert when used with a vector result type. Solve this by
allowing CSE on the vector elements, but not on the result vector for
now.
Second, this was also performing the CSE based on the input
ConstantInt pointer. The underlying buildConstant could potentially
convert the constant depending on the result type, giving in a
different ConstantInt*. Stop allowing the APInt and ConstantInt forms
from automatically casting to the result type to avoid any similar
problems in the future.
llvm-svn: 353077
This reverts commit 8bbd570fd5205a04d88d2e5513a6e4adbd028039.
Apparently adding ffloor breaks AMDGPU somehow, so I need to back this out
while I look into it.
llvm-svn: 353064
For the scalar case only.
Also move the similar G_MERGE_VALUES handling to a separate function
and cleanup to make them look more similar.
llvm-svn: 352979
Also fix an alignment bug getMachineMemOperand. If the
tracked value is null, the offset isn't tracked so the
base alignment needs to be reduced.
llvm-svn: 352716
This teaches the legalizer to handle G_FEXP in AArch64. As a result, it also
allows us to select G_FEXP.
It...
- Updates the legalizer-info tests
- Adds a test for legalizing exp
- Updates the existing fp tests to show that we can now select G_FEXP
https://reviews.llvm.org/D57483
llvm-svn: 352692
This teaches GlobalISel to emit a RTLib call for @llvm.log2 when it encounters
it.
It updates the existing floating point tests to show that we don't fall back on
the intrinsic, and select the correct instructions. It also adds a legalizer
test for G_FLOG2.
https://reviews.llvm.org/D57357
llvm-svn: 352673
This teaches the legalizer about G_FSQRT in AArch64. Also adds a legalizer
test for G_FSQRT, a selection test for it, and updates existing floating point
tests.
https://reviews.llvm.org/D57361
llvm-svn: 352671
I've repeatedly encountered bugs resulting from custom legalize
mutations returning nonsense legalize results, such as increasing the
number of elements for FewerElements. Add an assert function to make
sure the type to mutate to is consistent with the legalize action.
llvm-svn: 352636
This was ignoring the memory size, and producing multiple loads/stores
if the operand size was different from the memory size.
I assume this is the intent of not having an explicit G_ANYEXTLOAD
(although I think that would probably be better).
llvm-svn: 352523
This adds support for legalizing G_FLOG into a RTLib call.
It adds a legalizer test, and updates the existing floating point tests.
https://reviews.llvm.org/D57347
llvm-svn: 352429
This adds instruction selection support for @llvm.log10 in AArch64. It teaches
GISel to lower it to a library call, updates the relevant tests, and adds a
legalizer test for log10.
https://reviews.llvm.org/D57341
llvm-svn: 352418
This adds ISel support for lifetime markers in opt levels above O0.
It also updates the arm64-irtranslator test, and updates some AArch64 tests that
use them for added coverage.
It also adds a testcase taken from the X86 codegen tests which verified a bug
caused by lifetime markers + stack colouring in the past. This is intended to
make sure that GISel doesn't re-introduce the bug.
(This is basically a straight copy from what SelectionDAG does in
SelectionDAGBuilder.cpp)
https://reviews.llvm.org/D57187
llvm-svn: 352410
This contains all of the legalizer changes from D57197 necessary to select
G_FCOS and G_FSIN. It also updates several existing IR tests in
test/CodeGen/AArch64 that verify that we correctly lower the G_FCOS and G_FSIN
instructions.
https://reviews.llvm.org/D57197
3/3
llvm-svn: 352402
Lower G_USUBO and G_USUBE. Add narrowScalar for G_SUB.
Legalize and select G_SUB for MIPS 32.
Differential Revision: https://reviews.llvm.org/D53416
llvm-svn: 352351
This fixes loads like 's1 = load %p (load 1 from %p)' being combined with an
extend into an illegal 's8 = g_extload %p (load 1 from %p)' which doesn't do any
extension, by avoiding touching those < s8 size loads.
This bug was uncovered by a verifier update r351584, which I reverted it to keep
the bots green.
llvm-svn: 352311
https://reviews.llvm.org/D57178
Now add a hook in TargetPassConfig to query if CSE needs to be
enabled. By default this hook returns false only for O0 opt level but
this can be overridden by the target.
As a consequence of the default of enabled for non O0, a few tests
needed to be updated to not use CSE (by passing in -O0) to the run
line.
reviewed by: arsenm
llvm-svn: 352126