Make behavior of G_LOAD in widenScalar same as for G_ZEXTLOAD and
G_SEXTLOAD. That is perform widenScalarDst to size given by the target
and avoid additional checks in common code. Targets can reorder or add
additional rules in LegalizeRuleSet for the opcode to achieve desired
behavior.
Select extending load that does not have specified type of extension
into zero extending load.
Select truncating store that stores number of bytes indicated by size
in MachineMemoperand.
Differential Revision: https://reviews.llvm.org/D57454
llvm-svn: 353520
When a landing pad is calculated in a program that is compiled for micromips
with -fPIC flag, it will point to an even address.
Such an error will cause a segmentation fault, as the instructions in
micromips are aligned on odd addresses. This patch sets the last bit of the
offset where a landing pad is, to 1, which will effectively be an odd
address and point to the instruction exactly.
r344591 fixed this issue for -static compilation.
Patch by Aleksandar Beserminji.
Differential Revision: https://reviews.llvm.org/D57677
llvm-svn: 353480
Instruction abs.[ds] is not generating correct result when working
with NaNs for revisions prior mips32r6 and mips64r6.
To generate a sequence which always produce a correct result, but also
to allow user more control on how his code is compiled, attribute
+abs2008 is added, so user can choose legacy or 2008.
By default legacy mode is used on revisions prior R6. Mips32r6 and
mips64r6 use abs2008 mode by default.
Differential Revision: https://reviews.llvm.org/D35983
llvm-svn: 352370
Lower G_USUBO and G_USUBE. Add narrowScalar for G_SUB.
Legalize and select G_SUB for MIPS 32.
Differential Revision: https://reviews.llvm.org/D53416
llvm-svn: 352351
Select zero extending and sign extending load for MIPS32.
Use size from MachineMemOperand to determine number of bytes to load.
Differential Revision: https://reviews.llvm.org/D57099
llvm-svn: 352038
Use CombinerHelper to combine extending load instructions.
G_LOAD combined with G_ZEXT, G_SEXT or G_ANYEXT gives G_ZEXTLOAD,
G_SEXTLOAD or G_LOAD with same type as def of extending instruction
respectively.
Similarly G_ZEXTLOAD combined with G_ZEXT gives G_ZEXTLOAD and
G_SEXTLOAD combined with G_SEXT gives G_SEXTLOAD with same type
as def of extending instruction.
Differential Revision: https://reviews.llvm.org/D56914
llvm-svn: 352037
The callee address is added as an optional operand (MCSymbol) in
AdjustInstrPostInstrSelection() and then used by asm printer to insert:
'.reloc tmplabel, R_MIPS_JALR, symbol
tmplabel:'.
Controlled with '-mips-jalr-reloc', default is true.
Differential revision: https://reviews.llvm.org/D56694
llvm-svn: 351485
With this patch, shifts are lowered to optimal number of instructions
necessary to shift types larger than the general purpose register size.
This resolves PR/32293.
Thanks to Kyle Butt for reporting the issue!
Differential Revision: https://reviews.llvm.org/D56320
llvm-svn: 351059
Part of the effort to refactoring frame pointer code generation. We used
to use two function attributes "no-frame-pointer-elim" and
"no-frame-pointer-elim-non-leaf" to represent three kinds of frame
pointer usage: (all) frames use frame pointer, (non-leaf) frames use
frame pointer, (none) frame use frame pointer. This CL makes the idea
explicit by using only one enum function attribute "frame-pointer"
Option "-frame-pointer=" replaces "-disable-fp-elim" for tools such as
llc.
"no-frame-pointer-elim" and "no-frame-pointer-elim-non-leaf" are still
supported for easy migration to "frame-pointer".
tests are mostly updated with
// replace command line args ‘-disable-fp-elim=false’ with ‘-frame-pointer=none’
grep -iIrnl '\-disable-fp-elim=false' * | xargs sed -i '' -e "s/-disable-fp-elim=false/-frame-pointer=none/g"
// replace command line args ‘-disable-fp-elim’ with ‘-frame-pointer=all’
grep -iIrnl '\-disable-fp-elim' * | xargs sed -i '' -e "s/-disable-fp-elim/-frame-pointer=all/g"
Patch by Yuanfang Chen (tabloid.adroit)!
Differential Revision: https://reviews.llvm.org/D56351
llvm-svn: 351049
Introduce GlobalISel pre legalizer pass for MIPS.
It will be used to cope with instructions that require
combining before legalization.
Differential Revision: https://reviews.llvm.org/D56269
llvm-svn: 351046
This is https://bugs.llvm.org/show_bug.cgi?id=37151,
GNU objdump spec says that "Normally the disassembly output will skip blocks of zeroes.",
but currently, llvm-objdump prints them.
The patch implements the -z/--disassemble-zeroes option and switches the default to always
skip blocks of zeroes.
Differential revision: https://reviews.llvm.org/D56083
llvm-svn: 350823
Add widen scalar for type index 1 (i1 condition) for G_SELECT.
Select G_SELECT for pointer, s32(integer) and smaller low level
types on MIPS32.
Differential Revision: https://reviews.llvm.org/D56001
llvm-svn: 350063
Add support for s64 libcalls for G_SDIV, G_UDIV, G_SREM and G_UREM
and use integer type of correct size when creating arguments for
CLI.lowerCall.
Select G_SDIV, G_UDIV, G_SREM and G_UREM for types s8, s16, s32 and s64
on MIPS32.
Differential Revision: https://reviews.llvm.org/D55651
llvm-svn: 349499
Add narrowScalar for G_AND and G_XOR.
Legalize G_AND G_OR and G_XOR for types other then s32
with clampScalar on MIPS32.
Differential Revision: https://reviews.llvm.org/D55362
llvm-svn: 349475
As discussed on D53794, for float types with ranges smaller than the destination integer type, then we should be able to just use a regular FP_TO_SINT opcode.
I thought we'd need to provide MSA test cases for very small integer types as well (fp16 -> i8 etc.), but it turns out that promotion will kick in so they're unnecessary.
Differential Revision: https://reviews.llvm.org/D54703
llvm-svn: 347251
It's possible for vector op legalization to generate a shuffle. If that happens we should give a chance for DAG combine to combine that with a build_vector input.
I also fixed a bug in combineShuffleOfScalars that was considering the number of uses on a undef input to a shuffle. We don't care how many times undef is used.
Differential Revision: https://reviews.llvm.org/D54283
llvm-svn: 346530
FindBetterNeighborChains simulateanously improves the chain
dependencies of a chain of related stores avoiding the generation of
extra token factors. For chains longer than the GatherAllAliasDepths,
stores further down in the chain will necessarily fail, a potentially
significant waste and preventing otherwise trivial parallelization.
This patch directly parallelize the chains of stores before improving
each store. This generally improves DAG-level parallelism.
Reviewers: courbet, spatel, RKSimon, bogner, efriedma, craig.topper, rnk
Subscribers: sdardis, javed.absar, hiraditya, jrtc27, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D53552
llvm-svn: 346432
Set operands order for G_MERGE_VALUES and G_UNMERGE_VALUES so
that least significant bits always go first, regardless of endianness.
Differential Revision: https://reviews.llvm.org/D54098
llvm-svn: 346305
Set `LiveReg::PhysReg` to zero when freeing a register instead of
removing it from the entry from `LiveRegMap`. This way no iterators get
invalidated and we can avoid passing around and updating iterators all
over the place.
This does not change any allocator decisions. It is not completely NFC
because the arbitrary iteration order through `LiveRegMap` in
`spillAll()` changes so we may get a different order in those spill
sequences (the amount of spills does not change).
This is in preparation of https://reviews.llvm.org/D52010.
llvm-svn: 346298
Expand on LONG_BRANCH_LUi and LONG_BRANCH_(D)ADDiu pseudo
instructions by creating variants which support
less operands/accept GPR64Opnds as their operand in order
to appease the machine verifier pass.
Differential Revision: https://reviews.llvm.org/D53977
llvm-svn: 346133
reduceBuildVecConvertToConvertBuildVec vectorizes int2float in the DAGCombiner, which means that even if the LV/SLP has decided to keep scalar code using the cost models, this will override this.
While there are cases where vectorization is necessary in the DAG (mainly due to legalization artefacts), I don't think this is the case here, we should assume that the vectorizers know what they are doing.
Differential Revision: https://reviews.llvm.org/D53712
llvm-svn: 345964
When matching MipsISD::JmpLink t9, TargetExternalSymbol:i32'...',
wrong JALR16_MM is selected. This patch adds missing pattern for
JmpLink, so that JAL instruction is selected.
Differential Revision: https://reviews.llvm.org/D53366
llvm-svn: 345830
In MipsBranchExpansion::splitMBB, upon splitting
a block with two direct branches, remove the successor
of the newly created block (which inherits successors from
the original block) which is pointed to by the last
branch in the original block only if the targets of two
branches differ.
This is to fix the failing test when ran with
-verify-machineinstrs enabled.
Differential Revision: https://reviews.llvm.org/D53756
llvm-svn: 345821
- Relex hard coded registers and stack frame sizes
- Some test cleanups
- Change phi-dbg.ll to match on mir output after phi elimination instead
of going through the whole codegen pipeline.
This is in preparation for https://reviews.llvm.org/D52010
I'm committing all the test changes upfront that work before and after
independently.
llvm-svn: 345532
When a landing pad is calculated in a program that is compiled
for micromips, it will point to an even address. Such an error will
cause a segmentation fault, as the instructions in micromips are
aligned on odd addresses. This patch sets the last bit of the offset
where a landing pad is, to 1, which will effectively be
an odd address and point to the instruction exactly.
Differential Revision: https://reviews.llvm.org/D52985
llvm-svn: 344591
This is more consistent with what we usually do and matches some code X86 custom emits in some cases that I think I can cleanup.
The MIPS test change just looks to be an instruction ordering change.
llvm-svn: 344422
Failure was discovered upon running
projects/compiler-rt/test/builtins/Unit/divtc3_test.c
in a stage2 compiler build.
When compiling projects/compiler-rt/lib/builtins/divtc3.c,
a call to fmaxl within the divtc3 implementation had its
return values read from registers $2 and $3 instead of $f0 and $f2.
Include fmaxl in the list of long double emulation routines
to have its return value correctly interpreted as f128.
Almost exact issue here: https://reviews.llvm.org/D17760
Differential Revision: https://reviews.llvm.org/D52649
llvm-svn: 344326
Summary:
Extend analysis forwarding loads from preceeding stores to work with
extended loads and truncated stores to the same address so long as the
load is fully subsumed by the store.
Hexagon's swp-epilog-phis.ll and swp-memrefs-epilog1.ll test are
deleted as they've no longer seem to be relevant.
Reviewers: RKSimon, rnk, kparzysz, javed.absar
Subscribers: sdardis, nemanjai, hiraditya, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D49200
llvm-svn: 344142
Lower integer arguments larger then 32 bits for MIPS32.
setMostSignificantFirst is used in order for G_UNMERGE_VALUES and
G_MERGE_VALUES to always hold registers in same order, regardless of
endianness.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D52409
llvm-svn: 343315
The r337288 tried to fix result of icmp i1 when its input is not sanitized
by falling back to DagISel. While it now produces the correct result for
bit 0, the other bits can still hold arbitrary value which is not supported
by MipsFastISel branch lowering. This patch fixes the issue by falling back
to DagISel in this case.
Patch by Dragan Mladjenovic.
Differential Revision: https://reviews.llvm.org/D52045
llvm-svn: 342884
The patch extends size reduction pass for MicroMIPS. Two MOVE
instructions are transformed into one MOVEP instrucition.
Patch by Milena Vujosevic Janicic.
Differential revision: https://reviews.llvm.org/D52037
llvm-svn: 342572
An fp_to_sint node would be incorrectly lowered to a TruncIntFP node in
single-float mode. This would trigger an "Unexpected illegal type!"
assert.
Patch by Dan Ravensloft.
Differential revision: https://reviews.llvm.org/D51810
llvm-svn: 341952
MIPS ISAs start to support third operand for the `rdhwr` instruction
starting from Revision 6. But LLVM generates assembler code with
three-operands version of this instruction on any MIPS64 ISA. The third
operand is always zero, so in case of direct code generation we get
correct code.
This patch fixes the bug by adding an instruction alias. The same alias
already exists for 32-bit ISA.
Ideally, we also need to reject three-operands version of the `rdhwr`
instruction in an assembler code if ISA revision is less than 6. That is
a task for a separate patch.
This fixes PR38861 (https://bugs.llvm.org/show_bug.cgi?id=38861)
Differential revision: https://reviews.llvm.org/D51773
llvm-svn: 341919
This patch modifies hasStandardEncoding() / inMicroMipsMode() /
inMips16Mode() methods of the MipsSubtarget class so only one can be
true at any one time. That prevents the selection of microMIPS and MIPS
instructions and patterns that are defined in TableGen files at the same
time. A few new patterns and instruction definitions hae been added to
keep test cases passed.
Differential revision: https://reviews.llvm.org/D51483
llvm-svn: 341338
The `mtc1` and `mfc1` definitions in the MipsInstrFPU.td have MMRel,
but do not have StdMMR6Rel tags. When these instructions are emitted
for microMIPS R6 targets, `Mips::MipsR62MicroMipsR6` nor
`Mips::Std2MicroMipsR6` cannot find correct op-codes and as a result the
backend uses mips32 variant of the instructions encoding.
The patch fixes this problem by adding the StdMMR6Rel tag and check
instructions encoding in the test case.
Differential revision: https://reviews.llvm.org/D51482
llvm-svn: 341221
MipsSEInstrInfo class defines for internal purpose unconditional
branches as Mips::B nad Mips:J even in case of microMIPS code
generation. Under some conditions that leads to the bug - for rather long
branch which fits to Mips jump instruction offset size, but does not fit
to microMIPS jump offset size, we generate 'short' branch and later show
an error 'out of range PC16 fixup' after check in the isBranchOffsetInRange
routine.
Differential revision: https://reviews.llvm.org/D50615
llvm-svn: 340932
Involves microMIPS's jump in the analyzable branch set to reduce some
code patterns.
Differential revision: https://reviews.llvm.org/D50613
llvm-svn: 340931
For a certain combination of options, BuildPairF64_{64}, ExtractElementF64{_64}
may be expanded into instructions using stack.
Add implicit operand $sp for such cases so that ShrinkWrapping doesn't move
prologue setup below them.
Fixes MultiSource/Benchmarks/MallocBench/cfrac for
'--target=mips-img-linux-gnu -mcpu=mips32r6 -mfpxx -mnan=2008'
and
'--target=mips-img-linux-gnu -mcpu=mips32r6 -mfp64 -mnan=2008 -mno-odd-spreg'.
Differential Revision: https://reviews.llvm.org/D50986
llvm-svn: 340927
Summary:
I'm not sure if this patch is correct or if it needs more qualifying somehow. Bitcast shouldn't change the size of the load so it should be ok? We already do something similar for stores. We'll change the type of a volatile store if the resulting store is Legal or Custom. I'm not sure we should be allowing Custom there...
I was playing around with converting X86 atomic loads/stores(except seq_cst) into regular volatile loads and stores during lowering. This would allow some special RMW isel patterns in X86InstrCompiler.td to be removed. But there's some floating point patterns in there that didn't work because we don't fold (f64 (bitconvert (i64 volatile load))) or (f32 (bitconvert (i32 volatile load))).
Reviewers: efriedma, atanasyan, arsenm
Reviewed By: efriedma
Subscribers: jvesely, arsenm, sdardis, kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, arichardson, jrtc27, atanasyan, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D50491
llvm-svn: 340797
Legalize G_ADD for types smaller than i32.
LegalizationArtifactCombiner replaces extend instructions with appropriate
bitwise instructions.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D51213
llvm-svn: 340697
Previously we allowed the store to be Custom. But without knowing for sure that the Custom handling won't split the store, we shouldn't convert a volatile store. We also probably shouldn't be creating a store the requires custom handling after LegalizeOps. This could lead to an infinite loop if the custom handling was to insert a bitcast. Though I guess isStoreBitCastBeneficial could be used to block such a loop.
The test changes here are due to the volatile part of this. The stores in the test are all volatile and i32 stores are marked custom, So we are no longer converting them
This is related to D50491 where I was trying to allow some bitcasting of volatile loads
Differential Revision: https://reviews.llvm.org/D50578
llvm-svn: 340626
Lower integer arguments smaller than i32.
Support both register and stack arguments.
Define setLocInfo function for setting LocInfo field in ArgLocs vector.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D51031
llvm-svn: 340572
Add patterns for unhandled CondCode enumerables:
SETEQ, SETGE, SETGT, SETLE, SETLT, SETNE.
Stated at the ISD::CondCode enum declaration:
`All of these (except for the 'always folded ops')
should be handled for floating point.`
Add patterns which use these nodes, same as corresponding
'ordered' CondCode nodes.
Referring to 'Ordered means that neither operand is a QNAN'
we assume it is safe to match ex. SETLT node to the same
instruction as SETOLT.
Differential Revision: https://reviews.llvm.org/D50757
llvm-svn: 340392
When potential jump instruction and target are in the same segment, use
jump instruction with immediate field.
In cases where offset does not fit immediate value of a bc/j instructions,
offset is stored into register, and then jump register instruction is used.
Differential Revision: https://reviews.llvm.org/D48019
llvm-svn: 339126
Override getTypeForExtReturn so that functions returning
an i32 typed value have it sign extended on MIPS64.
Also provide patterns to get rid of unneeded sign extensions
for arithmetic instructions which implicitly sign extend
their results.
Differential Revision: https://reviews.llvm.org/D48374
llvm-svn: 338019
Add support for lowering pointer arguments.
Changing type from pointer to integer is already done in
MipsTargetLowering::getRegisterTypeForCallingConv.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D49419
llvm-svn: 337912
For the final DTPREL addition, rather than a lui/daddiu/daddu triple,
LLVM was erronously emitting a daddiu/daddiu pair, treating the %dtprel_hi
as if it were a %dtprel_lo, since Mips::Hi expands unshifted for Sym64.
Instead, use a new TlsHi node and, although unnecessary due to the exact
structure of the nodes emitted, use TlsHi for local exec too to prevent
future bugs. Also garbage-collect the unused TprelLo and TlsGd nodes,
and TprelHi since its functionality is provided by the new common TlsHi node.
Patch by James Clarke.
Differential revision: https://reviews.llvm.org/D49259
llvm-svn: 337827
This is a follow-up to the rL335185. Those commit adds some WrapperPat
patterns for microMIPS target. But declaration of the WrapperPat class
is under the NotInMicroMips predicate and microMIPS patterns cannot be
selected because predicate (Subtarget->inMicroMipsMode()) &&
(!Subtarget->inMicroMipsMode()) is always false.
This change move out the WrapperPat class declaration from the
NotInMicroMips predicate and enables microMIPS WrapperPat patterns.
Differential revision: https://reviews.llvm.org/D49533
llvm-svn: 337646
This is a follow-up to the rL337171. This patch fixes regression
introduced by the r337171 and enables MipsTruncIntFP pattern.
Differential revision: https://reviews.llvm.org/D49469
llvm-svn: 337392
The Mips FastISel back-end does not extend i1 values while lowering icmp.
Ensure that we bail into DAG ISel when handling this case.
Patch by Dragan Mladjenovic.
Differential Revision: https://reviews.llvm.org/D49290
llvm-svn: 337288
If we are only extracting vector elements via EXTRACT_VECTOR_ELT(s) we may be able to use SimplifyDemandedVectorElts to avoid unnecessary vector ops.
Differential Revision: https://reviews.llvm.org/D49262
llvm-svn: 337258
Add code for selection of G_LOAD, G_STORE, G_GEP, G_FRAMEINDEX and
G_CONSTANT. Support loads and stores of i32 values.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D48957
llvm-svn: 337168
See https://reviews.llvm.org/D47106 for details.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D47171
This commit drops that patch's changes to:
llvm/test/CodeGen/NVPTX/f16x2-instructions.ll
llvm/test/CodeGen/NVPTX/param-load-store.ll
For some reason, the dos line endings there prevent me from commiting
via the monorepo. A follow-up commit (not via the monorepo) will
finish the patch.
llvm-svn: 336843
Similar to PR/25526, fast-regalloc introduces spills at the end of basic
blocks. When this occurs in between an ll and sc, the stores can cause the
atomic sequence to fail.
This patch fixes the issue by introducing more pseudos to represent atomic
operations and moving their lowering to after the expansion of postRA
pseudos.
This version addresses issues with the initial implementation and covers
all atomic operations.
This resolves PR/32020.
Thanks to James Cowgill for reporting the issue!
Patch By: Simon Dardis
Differential Revision: https://reviews.llvm.org/D31287
llvm-svn: 336328
CRC and GINV ASE require revision 6, Virtualization requires revision 5.
Print a warning when revision is older than required.
Differential Revision: https://reviews.llvm.org/D48843
llvm-svn: 336296
Lower more than 4 arguments using stack. This patch targets MIPS32.
It supports only functions with arguments of type i32.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D47934
llvm-svn: 336185
This change fixes the issue that arises when we duplicate condition from
the predecessor block. If the condition's arguments are not considered alive
across the blocks, fast regalloc gets confused and starts generating reloads
from the slots that have never been spilled to. This change also leads to
smaller code given that, unlike on architectures with condition codes, on
Mips we can branch directly on register value, thus we gain nothing by
duplication.
Patch by Dragan Mladjenovic.
Differential Revision: https://reviews.llvm.org/D48642
llvm-svn: 336084
These are identical but use microMIPS instructions instead of MIPS instructions.
Also, flatten the 'let AdditionalPredicates = [InMicroMips]' by using the
ISA_MICROMIPS adjective. Add tests for constant materialization.
Reviewers: atanasyan, abeserminji, smaksimovic
Differential Revision: https://reviews.llvm.org/D48275
llvm-svn: 335185
There are no provided instruction definitions for this architecture.
Reviewers: smaksimovic, atanasyan, abeserminji
Differential Revision: https://reviews.llvm.org/D48320
llvm-svn: 335057
Author: milena.vujosevic.janicic
Reviewers: sdardis
The patch extends size reduction pass for MicroMIPS.
It introduces reduction of two instructions into one instruction:
Two SW instructions are transformed into one SWP instrucition.
Two LW instructions are transformed into one LWP instrucition.
Differential Revision: https://reviews.llvm.org/D39115
llvm-svn: 334595
Extend LONG_BRANCH_LUi and LONG_BRANCH_ADDiu pseudo instructions with
additional flag, so instead of always lowering to lui %hi(...),
addiu %lo(...) or addiu %hi(...), now they can lower to either %lo, %hi,
%higher or %highest depending on the added flag.
Differential Revision: https://reviews.llvm.org/D47941
llvm-svn: 334490
When program is compiled for mips3 with n64 abi, wrong register class
is used for creating an emergency spill slot. This patch fixes the
correct register class to be chosen.
This patch resolves PR35859.
Thanks to John Baldwin for reporting the issue!
Differential Revision: https://reviews.llvm.org/D47938
llvm-svn: 334419
Add minimal support to lower function calls.
Support only functions with arguments/return that go through registers
and have type i32.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D45627
llvm-svn: 334071
Previously, their listed predicates were overridden at the scope level.
Reviewers: atanasyan, abeserminji, smaksimovic
Differential Revision: https://reviews.llvm.org/D46947
llvm-svn: 333405
MipsLongBranchPass and MipsHazardSchedule passes are joined to one pass
because of mutual conflict. When MipsHazardSchedule inserts 'nop's, it
potentially breaks some jumps, so they have to be expanded to long
branches. When some branch is expanded to long branch, it potentially
creates a hazard situation, which should be fixed by adding nops.
New pass is called MipsBranchExpansion, it combines these two passes,
and runs them alternately until one of them reports no changes were made.
Differential Revision: https://reviews.llvm.org/D46641
llvm-svn: 332977
MipsLongBranchPass and MipsHazardSchedule passes are joined to one pass
because of mutual conflict. When MipsHazardSchedule inserts 'nop's, it
potentially breaks some jumps, so they have to be expanded to long
branches. When some branch is expanded to long branch, it potentially
creates a hazard situation, which should be fixed by adding nops.
New pass is called MipsBranchExpansion, it combines these two passes,
and runs them alternately until one of them reports no changes were made.
Differential Revision: https://reviews.llvm.org/D46641
llvm-svn: 332834
Add support for this target hook, covering MIPS, microMIPS and MIPSR6, along
with some tests. Also add missing getOppositeBranchOpc() cases exposed by the
tests.
Reviewers: atanasyan, abeserminji, smaksimovic
Differential Revision: https://reviews.llvm.org/D46794
llvm-svn: 332446
Summary:
SelectionDAGLegalize::ExpandNode() inserts an ISD::MUL when lowering a
BR_JT opcode. While many backends optimize this multiply into a shift, e.g.
the MIPS backend currently always lowers this into a sequence of
load-immediate+multiply+mflo in MipsSETargetLowering::lowerMulDiv().
I initially changed the multiply to a shift in the MIPS backend but it
turns out that would not have handled the MIPSR6 case and was a lot more
code than doing it in LegalizeDAG.
I believe performing this simple optimization in LegalizeDAG instead of
each individual backend is the better solution since this also fixes other
backeds such as MSP430 which calls the multiply runtime function
__mspabi_mpyi without this patch.
Reviewers: sdardis, atanasyan, pftbest, asl
Reviewed By: sdardis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45760
llvm-svn: 332439
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
Introduced a new pattern for matching splat.d explicitly.
Both splat.d and splati.d can now be generated from the @llvm.mips.splat.d
intrinsic depending on whether an immediate value has been passed.
Differential Revision: https://reviews.llvm.org/D45683
llvm-svn: 331771
As Roman Tereshin pointed out in https://reviews.llvm.org/D45541, the
-global-isel option is redundant when -run-pass is given. -global-isel sets up
the GlobalISel passes in the pass manager but -run-pass skips that entirely and
configures it's own pipeline.
llvm-svn: 331603
The previous version of this patch restricted the 'jal' instruction to MIPS and
microMIPSr3. microMIPS32r6 does not have this instruction and instead uses jal
as an alias for balc.
Original commit message:
> Reviewers: smaksimovic, atanasyan, abeserminji
>
> Differential Revision: https://reviews.llvm.org/D46114
>
llvm-svn: 331259