This patch implements trap and FP to and from double conversions. The builtins
generate code that mirror what is generated from the XL compiler. Intrinsics
are named conventionally with builtin_ppc, but are aliased to provide the same
builtin names as the XL compiler.
Differential Revision: https://reviews.llvm.org/D103668
Original commit message:
[clang-repl] Implement partial translation units and error recovery.
https://reviews.llvm.org/D96033 contained a discussion regarding efficient
modeling of error recovery. @rjmccall has outlined the key ideas:
Conceptually, we can split the translation unit into a sequence of partial
translation units (PTUs). Every declaration will be associated with a unique PTU
that owns it.
The first key insight here is that the owning PTU isn't always the "active"
(most recent) PTU, and it isn't always the PTU that the declaration
"comes from". A new declaration (that isn't a redeclaration or specialization of
anything) does belong to the active PTU. A template specialization, however,
belongs to the most recent PTU of all the declarations in its signature - mostly
that means that it can be pulled into a more recent PTU by its template
arguments.
The second key insight is that processing a PTU might extend an earlier PTU.
Rolling back the later PTU shouldn't throw that extension away. For example, if
the second PTU defines a template, and the third PTU requires that template to
be instantiated at float, that template specialization is still part of the
second PTU. Similarly, if the fifth PTU uses an inline function belonging to the
fourth, that definition still belongs to the fourth. When we go to emit code in
a new PTU, we map each declaration we have to emit back to its owning PTU and
emit it in a new module for just the extensions to that PTU. We keep track of
all the modules we've emitted for a PTU so that we can unload them all if we
decide to roll it back.
Most declarations/definitions will only refer to entities from the same or
earlier PTUs. However, it is possible (primarily by defining a
previously-declared entity, but also through templates or ADL) for an entity
that belongs to one PTU to refer to something from a later PTU. We will have to
keep track of this and prevent unwinding to later PTU when we recognize it.
Fortunately, this should be very rare; and crucially, we don't have to do the
bookkeeping for this if we've only got one PTU, e.g. in normal compilation.
Otherwise, PTUs after the first just need to record enough metadata to be able
to revert any changes they've made to declarations belonging to earlier PTUs,
e.g. to redeclaration chains or template specialization lists.
It should even eventually be possible for PTUs to provide their own slab
allocators which can be thrown away as part of rolling back the PTU. We can
maintain a notion of the active allocator and allocate things like Stmt/Expr
nodes in it, temporarily changing it to the appropriate PTU whenever we go to do
something like instantiate a function template. More care will be required when
allocating declarations and types, though.
We would want the PTU to be efficiently recoverable from a Decl; I'm not sure
how best to do that. An easy option that would cover most declarations would be
to make multiple TranslationUnitDecls and parent the declarations appropriately,
but I don't think that's good enough for things like member function templates,
since an instantiation of that would still be parented by its original class.
Maybe we can work this into the DC chain somehow, like how lexical DCs are.
We add a different kind of translation unit `TU_Incremental` which is a
complete translation unit that we might nonetheless incrementally extend later.
Because it is complete (and we might want to generate code for it), we do
perform template instantiation, but because it might be extended later, we don't
warn if it declares or uses undefined internal-linkage symbols.
This patch teaches clang-repl how to recover from errors by disconnecting the
most recent PTU and update the primary PTU lookup tables. For instance:
```./clang-repl
clang-repl> int i = 12; error;
In file included from <<< inputs >>>:1:
input_line_0:1:13: error: C++ requires a type specifier for all declarations
int i = 12; error;
^
error: Parsing failed.
clang-repl> int i = 13; extern "C" int printf(const char*,...);
clang-repl> auto r1 = printf("i=%d\n", i);
i=13
clang-repl> quit
```
Differential revision: https://reviews.llvm.org/D104918
Support Narrowing conversions to bool in if constexpr condition
under C++23 language mode.
Only if constexpr is implemented as the behavior of static_assert
is already conforming. Still need to work on explicit(bool) to
complete support.
OpenMP 5.1 added support for writing OpenMP directives using [[]]
syntax in addition to using #pragma and this introduces support for the
new syntax.
In OpenMP, the attributes take one of two forms:
[[omp::directive(...)]] or [[omp::sequence(...)]]. A directive
attribute contains an OpenMP directive clause that is identical to the
analogous #pragma syntax. A sequence attribute can contain either
sequence or directive arguments and is used to ensure that the
attributes are processed sequentially for situations where the order of
the attributes matter (remember:
https://eel.is/c++draft/dcl.attr.grammar#4.sentence-4).
The approach taken here is somewhat novel and deserves mention. We
could refactor much of the OpenMP parsing logic to work for either
pragma annotation tokens or for attribute clauses. It would be a fair
amount of effort to share the logic for both, but it's certainly
doable. However, the semantic attribute system is not designed to
handle the arbitrarily complex arguments that OpenMP directives
contain. Adding support to thread the novel parsed information until we
can produce a semantic attribute would be considerably more effort.
What's more, existing OpenMP constructs are not (often) represented as
semantic attributes. So doing this through Attr.td would be a massive
undertaking that would likely only benefit OpenMP and comes with
additional risks. Rather than walk down that path, I am taking
advantage of the fact that the syntax of the directives within the
directive clause is identical to that of the #pragma form. Once the
parser recognizes that we're processing an OpenMP attribute, it caches
all of the directive argument tokens and then replays them as though
the user wrote a pragma. This reuses the same OpenMP parsing and
semantic logic directly, but does come with a risk if the OpenMP
committee decides to purposefully diverge their pragma and attribute
syntaxes. So, despite this being a novel approach that does token
replay, I think it's actually a better approach than trying to do this
through the declarative syntax in Attr.td.
The `-analyzer-display-progress` displayed the function name of the
currently analyzed function. It differs in C and C++. In C++, it
prints the argument types as well in a comma-separated list.
While in C, only the function name is displayed, without the brackets.
E.g.:
C++: foo(), foo(int, float)
C: foo
In crash traces, the analyzer dumps the location contexts, but the
string is not enough for `-analyze-function` in C++ mode.
This patch addresses the issue by dumping the proper function names
even in stack traces.
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D105708
This reverts commit 6775fc6ffa.
It also reverts "[lldb] Fix compilation by adjusting to the new ASTContext signature."
This reverts commit 03a3f86071.
We see some failures on the lldb infrastructure, these changes might play a role
in it. Let's revert it now and see if the bots will become green.
Ref: https://reviews.llvm.org/D104918
https://reviews.llvm.org/D96033 contained a discussion regarding efficient
modeling of error recovery. @rjmccall has outlined the key ideas:
Conceptually, we can split the translation unit into a sequence of partial
translation units (PTUs). Every declaration will be associated with a unique PTU
that owns it.
The first key insight here is that the owning PTU isn't always the "active"
(most recent) PTU, and it isn't always the PTU that the declaration
"comes from". A new declaration (that isn't a redeclaration or specialization of
anything) does belong to the active PTU. A template specialization, however,
belongs to the most recent PTU of all the declarations in its signature - mostly
that means that it can be pulled into a more recent PTU by its template
arguments.
The second key insight is that processing a PTU might extend an earlier PTU.
Rolling back the later PTU shouldn't throw that extension away. For example, if
the second PTU defines a template, and the third PTU requires that template to
be instantiated at float, that template specialization is still part of the
second PTU. Similarly, if the fifth PTU uses an inline function belonging to the
fourth, that definition still belongs to the fourth. When we go to emit code in
a new PTU, we map each declaration we have to emit back to its owning PTU and
emit it in a new module for just the extensions to that PTU. We keep track of
all the modules we've emitted for a PTU so that we can unload them all if we
decide to roll it back.
Most declarations/definitions will only refer to entities from the same or
earlier PTUs. However, it is possible (primarily by defining a
previously-declared entity, but also through templates or ADL) for an entity
that belongs to one PTU to refer to something from a later PTU. We will have to
keep track of this and prevent unwinding to later PTU when we recognize it.
Fortunately, this should be very rare; and crucially, we don't have to do the
bookkeeping for this if we've only got one PTU, e.g. in normal compilation.
Otherwise, PTUs after the first just need to record enough metadata to be able
to revert any changes they've made to declarations belonging to earlier PTUs,
e.g. to redeclaration chains or template specialization lists.
It should even eventually be possible for PTUs to provide their own slab
allocators which can be thrown away as part of rolling back the PTU. We can
maintain a notion of the active allocator and allocate things like Stmt/Expr
nodes in it, temporarily changing it to the appropriate PTU whenever we go to do
something like instantiate a function template. More care will be required when
allocating declarations and types, though.
We would want the PTU to be efficiently recoverable from a Decl; I'm not sure
how best to do that. An easy option that would cover most declarations would be
to make multiple TranslationUnitDecls and parent the declarations appropriately,
but I don't think that's good enough for things like member function templates,
since an instantiation of that would still be parented by its original class.
Maybe we can work this into the DC chain somehow, like how lexical DCs are.
We add a different kind of translation unit `TU_Incremental` which is a
complete translation unit that we might nonetheless incrementally extend later.
Because it is complete (and we might want to generate code for it), we do
perform template instantiation, but because it might be extended later, we don't
warn if it declares or uses undefined internal-linkage symbols.
This patch teaches clang-repl how to recover from errors by disconnecting the
most recent PTU and update the primary PTU lookup tables. For instance:
```./clang-repl
clang-repl> int i = 12; error;
In file included from <<< inputs >>>:1:
input_line_0:1:13: error: C++ requires a type specifier for all declarations
int i = 12; error;
^
error: Parsing failed.
clang-repl> int i = 13; extern "C" int printf(const char*,...);
clang-repl> auto r1 = printf("i=%d\n", i);
i=13
clang-repl> quit
```
Differential revision: https://reviews.llvm.org/D104918
Replace the clang builtin function and LLVM intrinsic previously used to select
the f64x2.promote_low_f32x4 instruction with custom combines from standard
SelectionDAG nodes. Implement the new combines to share code with the similar
combines for f64x2.convert_low_i32x4_{s,u}. Resolves PR50232.
Differential Revision: https://reviews.llvm.org/D105675
This change is intended as initial setup. The plan is to add
more semantic checks later. I plan to update the documentation
as more semantic checks are added (instead of documenting the
details up front). Most of the code closely mirrors that for
the Swift calling convention. Three places are marked as
[FIXME: swiftasynccc]; those will be addressed once the
corresponding convention is introduced in LLVM.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D95561
This reverts commit 52aeacfbf5.
There isn't full agreement on a path forward yet, but there is agreement that
this shouldn't land as-is. See discussion on https://reviews.llvm.org/D105338
Also reverts unreviewed "[clang] Improve `-Wnull-dereference` diag to be more in-line with reality"
This reverts commit f4877c78c0.
And all the related changes to tests:
This reverts commit 9a0152799f.
This reverts commit 3f7c9cc274.
This reverts commit 329f8197ef.
This reverts commit aa9f58cc2c.
This reverts commit 2df37d5ddd.
This reverts commit a72a441812.
C++23 will make these conversions ambiguous - so fix them to make the
codebase forward-compatible with C++23 (& a follow-up change I've made
will make this ambiguous/invalid even in <C++23 so we don't regress
this & it generally improves the code anyway)
D105314 added the abibility choose to use AsmParser for parsing inline
asm. -no-intergrated-as will override this default if specified
explicitly.
If toolchain choose to use MCAsmParser for inline asm, don't pass
the option to disable integrated-as explictly unless set by user.
Reviewed By: #powerpc, shchenz
Differential Revision: https://reviews.llvm.org/D105512
Named return of a variable with aligned attribute would
trip an assert in case alignment was dependent.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D105380
This patch implaments the load and reserve and store conditional
builtins for the PowerPC target, in order to have feature parody with
xlC on AIX.
Differential revision: https://reviews.llvm.org/D105236
Named return of a variable with aligned attribute would
trip an assert in case alignment was dependent.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D105380
This option implies -fdump-record-layouts but dumps record layout information with canonical field types, which can be more useful in certain cases when comparing structure layouts.
Reviewed By: stevewan
Differential Revision: https://reviews.llvm.org/D105112
Allow a preprocessor observer to be notified of mark pragmas. Although
this does not impact code generation in any way, it is useful for other
clients, such as clangd, to be able to identify any marked regions.
Reviewed By: dgoldman
Differential Revision: https://reviews.llvm.org/D105368
A user reported an issue to me via email that Clang was accepting some
code that GCC was rejecting. After investigation, it turned out to be a
general problem of us failing to properly reject attributes written in
the type position in C when they don't apply to types. The root cause
was a terminology issue -- we sometimes use "CXX11Attr" to mean [[]] in
C++11 mode and sometimes [[]] in general -- and this came back to bite
us because in this particular case, it really meant [[]] in C++ mode.
I fixed the issue by introducing a new function
AttributeCommonInfo::isStandardAttributeSyntax() to represent [[]] in
either C or C++ mode.
This fix pointed out that we've had the issue in some of our existing
tests, which have all been corrected. This resolves
https://bugs.llvm.org/show_bug.cgi?id=50954.
Before this patch, the dependence of CallExpr was only computed in the
constructor, the dependence bits might not reflect truth -- some arguments might
be not set (nullptr) during this time, e.g. CXXDefaultArgExpr will be set via
the setArg method in the later parsing stage, so we need to recompute the
dependence bits.
This extends the effects of [[ http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1825r0.html | P1825 ]] to all C++ standards from C++11 up to C++20.
According to Motion 23 from Cologne 2019, P1825R0 was accepted as a Defect Report, so we retroactively apply this all the way back to C++11.
Note that we also remove implicit moves from C++98 as an extension
altogether, since the expanded first overload resolution from P1825
can cause some meaning changes in C++98.
For example it can change which copy constructor is picked when both const
and non-const ones are available.
This also rips out warn_return_std_move since there are no cases where it would be worthwhile to suggest it.
This also fixes a bug with bailing into the second overload resolution
when encountering a non-rvref qualified conversion operator.
This was unnoticed until now, so two new test cases cover these.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D104500
This patch adds a new clang builtin, __arithmetic_fence. The purpose of the
builtin is to provide the user fine control, at the expression level, over
floating point optimization when -ffast-math (-ffp-model=fast) is enabled.
The builtin prevents the optimizer from rearranging floating point expression
evaluation. The new option fprotect-parens has the same effect on
parenthesized expressions, forcing the optimizer to respect the parentheses.
Reviewed By: aaron.ballman, kpn
Differential Revision: https://reviews.llvm.org/D100118
Added the option `-altivec-src-compat=[mixed,gcc,xl]`. The default at this time is `mixed`.
The default behavior for clang is for all vector compares to return a scalar unless the vectors being
compared are vector bool or vector pixel. In that case the compare returns a
vector. With the gcc case all vector compares return vectors and in the xl case
all vector compares return scalars.
This patch does not change the default behavior of clang.
This option will be used in future patches to implement behaviour compatibility for the vector bool/pixel types.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D103615
This commit adds a function to the top-class of SVal hierarchy to
provide type information about the value. That can be extremely
useful when this is the only piece of information that the user is
actually caring about.
Additionally, this commit introduces a testing framework for writing
unit-tests for symbolic values.
Differential Revision: https://reviews.llvm.org/D104550
This reverts commit c3fe847f9d.
Tests fail in non-asserts builds because they assume named IR, by the
looks of it (testing for the "entry" label, for instance). I don't know
enough about the update_cc_test_checks.py stuff to know how to manually
fix these tests, so reverting for now.
This patch adds a new clang builtin, __arithmetic_fence. The purpose of the
builtin is to provide the user fine control, at the expression level, over
floating point optimization when -ffast-math (-ffp-model=fast) is enabled.
The builtin prevents the optimizer from rearranging floating point expression
evaluation. The new option fprotect-parens has the same effect on
parenthesized expressions, forcing the optimizer to respect the parentheses.
Reviewed By: aaron.ballman, kpn
Differential Revision: https://reviews.llvm.org/D100118
Added the option `-altivec-src-compat=[mixed,gcc,xl]`. The default at this time is `mixed`.
The default behavior for clang is for all vector compares to return a scalar unless the vectors being
compared are vector bool or vector pixel. In that case the compare returns a
vector. With the gcc case all vector compares return vectors and in the xl case
all vector compares return scalars.
This patch does not change the default behavior of clang.
This option will be used in future patches to implement behaviour compatibility for the vector bool/pixel types.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D103615
Since RangeSet::Factory actually contains BasicValueFactory, we can
remove value factory from many function signatures inside the solver.
Differential Revision: https://reviews.llvm.org/D105005
I find as I develop I'm moving between many different languages C++,C#,JavaScript all the time. As I move between the file types I like to keep `clang-format` as my formatting tool of choice. (hence why I initially added C# support in {D58404}) I know those other languages have their own tools but I have to learn them all, and I have to work out how to configure them, and they may or may not have integration into my IDE or my source code integration.
I am increasingly finding that I'm editing additional JSON files as part of my daily work and my editor and git commit hooks are just not setup to go and run [[ https://stedolan.github.io/jq/ | jq ]], So I tend to go to [[ https://jsonformatter.curiousconcept.com/ | JSON Formatter ]] and copy and paste back and forth. To get nicely formatted JSON. This is a painful process and I'd like a new one that causes me much less friction.
This has come up from time to time:
{D10543}
https://stackoverflow.com/questions/35856565/clang-format-a-json-filehttps://bugs.llvm.org/show_bug.cgi?id=18699
I would like to stop having to do that and have formatting JSON as a first class clang-format support `Language` (even if it has minimal style settings at present).
This revision adds support for formatting JSON using the inbuilt JSON serialization library of LLVM, With limited control at present only over the indentation level
This adds an additional Language into the .clang-format file to separate the settings from your other supported languages.
Reviewed By: HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D93528
Word on the grapevine was that the committee had some discussion that
ended with unanimous agreement on eliminating relational function pointer comparisons.
We wanted to be bold and just ban all of them cold turkey.
But then we chickened out at the last second and are going for
eliminating just the spaceship overload candidate instead, for now.
See D104680 for reference.
This should be fine and "safe", because the only possible semantic change this
would cause is that overload resolution could possibly be ambiguous if
there was another viable candidate equally as good.
But to save face a little we are going to:
* Issue an "error" for three-way comparisons on function pointers.
But all this is doing really is changing one vague error message,
from an "invalid operands to binary expression" into an
"ordered comparison of function pointers", which sounds more like we mean business.
* Otherwise "warn" that comparing function pointers like that is totally
not cool (unless we are told to keep quiet about this).
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D104892
This patch adds a new option for the new Flang driver:
`-fno-analyzed-objects-for-unparse`. The semantics are similar to
`-funparse-typed-exprs-to-f18-fc` from `f18`. For consistency, the
latter is replaced with `-fno-analyzed-objects-for-unparse`.
The new option controls the behaviour of the unparser (i.e. the action
corresponding to `-fdebug-unparse`). The default behaviour is to use the
analyzed objects when unparsing. The new flag can be used to turn this
off, so that the original parse-tree objects are used. The analyzed
objects are generated during the semantic checks [1].
This patch also updates the semantics of
`-fno-analyzed-objects-for-unparse`/`-funparse-typed-exprs-to-f18-fc`
in `f18`, so that this flag is always taken into account when `Unparse`
is used (this way the semantics in `f18` and `flang-new` are identical).
The added test file is based on example from Peter Steinfeld.
[1]
https://github.com/llvm/llvm-project/blob/main/flang/docs/Semantics.md
Differential Revision: https://reviews.llvm.org/D103612
Consider the code
```
void f(int a0, int b0, int c)
{
int a1 = a0 - b0;
int b1 = (unsigned)a1 + c;
if (c == 0) {
int d = 7L / b1;
}
}
```
At the point of divisiion by `b1` that is considered to be non-zero,
which results in a new constraint for `$a0 - $b0 + $c`. The type
of this sym is unsigned, however, the simplified sym is `$a0 -
$b0` and its type is signed. This is probably the result of the
inherent improper handling of casts. Anyway, Range assignment
for constraints use this type information. Therefore, we must
make sure that first we simplify the symbol and only then we
assign the range.
Differential Revision: https://reviews.llvm.org/D104844
These allow getting a whole register from a larger lmul. Or
inserting a whole register into a larger lmul register. Fractional
lmuls are not supported as they would require a vslide.
Based on this update to the intrinsic doc
https://github.com/riscv/rvv-intrinsic-doc/pull/99
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D104822
This introduces ReferenceAlignment style option modeled around
PointerAlignment.
Style implementors can specify Left, Right, Middle or Pointer to
follow whatever the PointerAlignment option specifies.
Differential Revision: https://reviews.llvm.org/D104096
Although clang is able to defer overloading resolution
diagnostics for common functions. It does not defer
overloading resolution caused diagnostics for overloaded
operators.
This patch extends the existing deferred
diagnostic mechanism and defers a diagnostic caused
by overloaded operator.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D104505
According to https://eel.is/c++draft/over.literal
> double operator""_Bq(long double); // OK: does not use the reserved identifier _Bq ([lex.name])
> double operator"" _Bq(long double); // ill-formed, no diagnostic required: uses the reserved identifier _Bq ([lex.name])
Obey that rule by keeping track of the operator literal name status wrt. leading whitespace.
Fix: https://bugs.llvm.org/show_bug.cgi?id=50644
Differential Revision: https://reviews.llvm.org/D104299
The default Altivec ABI was implemented but the clang error for specifying
its use still remains. Users could get around this but not specifying the
type of Altivec ABI but we need to remove the error.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D102094
This change adds an option which, in addition to dumping the record
layout as is done by -fdump-record-layouts, causes us to compute the
layout for all complete record types (rather than the as-needed basis
which is usually done by clang), so that we will dump them as well.
This is useful if we are looking for layout differences across large
code bases without needing to instantiate every type we are interested in.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D104484
Currently the lambda body indents relative to where the lambda signature is located. This instead lets the user
choose to align the lambda body relative to the parent scope that contains the lambda declaration. Thus:
someFunction([] {
lambdaBody();
});
will always have the same indentation of the body even when the lambda signature goes on a new line:
someFunction(
[] {
lambdaBody();
});
whereas before lambdaBody would be indented 6 spaces.
Differential Revision: https://reviews.llvm.org/D102706
Summary:
The changes introduced in D97680 turns this command line option into a no-op so
it can be removed entirely.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D102940
GCC has had this function attribute since GCC 7.1 for this purpose. I
added "no_profile" last week in D104475; rename this to
"no_profile_instrument_function" to improve compatibility with GCC.
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80223#c11
Reviewed By: MaskRay, aaron.ballman
Differential Revision: https://reviews.llvm.org/D104658
This patch does three things:
- Map the /external:I flag to -isystem
- Add support for the /external:env:<var> flag which reads system
include paths from the <var> environment variable
- Pick up system include dirs EXTERNAL_INCLUDE in addition to the old
INCLUDE environment variable.
Differential revision: https://reviews.llvm.org/D104387
This implements a more comprehensive fix than was done at D95409.
Instead of excluding just function pointer subobjects, we also
exclude any user-defined function pointer conversion operators.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D103855
Support -Wno-frame-larger-than (with no =) and make it properly
interoperate with -Wframe-larger-than. Reject -Wframe-larger-than with
no argument.
We continue to support Clang's old spelling, -Wframe-larger-than=, for
compatibility with existing users of that facility.
In passing, stop the driver from accepting and ignoring
-fwarn-stack-size and make it a cc1-only flag as intended.
When creating a PCH file the use of a temp file will be dictated by the
presence or absence of the -fno-temp-file flag. Creating a module file
will always use a temp file via the new ForceUseTemporary flag.
This fixes bug 50033.
This expands NRVO propagation for more cases:
Parse analysis improvement:
* Lambdas and Blocks with dependent return type can have their variables
marked as NRVO Candidates.
Variable instantiation improvements:
* Fixes crash when instantiating NRVO variables in Blocks.
* Functions, Lambdas, and Blocks which have auto return type have their
variables' NRVO status propagated. For Blocks with non-auto return type,
as a limitation, this propagation does not consider the actual return
type.
This also implements exclusion of VarDecls which are references to
dependent types.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: Quuxplusone
Differential Revision: https://reviews.llvm.org/D99696
Currently, `hasUnaryOperand` fails for the overloaded `operator*`. This patch fixes the bug and
adds tests for this case.
Differential Revision: https://reviews.llvm.org/D104389
The new option will run the semantic checks and then dump the parse tree
and all the symbols. This is equivalent to running the driver twice,
once with `-fdebug-dump-parse-tree` and then with
the `-fdebug-dump-symbols` action flag.
Currently we wouldn't be able to achieve the same by simply running:
```
flang-new -fc1 -fdebug-dump-parse-tree -fdebug-dump-symbols <input-file>
```
That's because the new driver will only run one frontend action per
invocation (both of the flags used here are action flags). Diverging
from this design would lead to costly compromises and it's best avoided.
We may want to consider re-designing our debugging actions (and action
options) in the future so that there's more code re-use. For now, I'm
focusing on making sure that we support all the major cases requested by
our users.
Differential Revision: https://reviews.llvm.org/D104305
This change caused build errors related to move-only __block variables,
see discussion on https://reviews.llvm.org/D99696
> This expands NRVO propagation for more cases:
>
> Parse analysis improvement:
> * Lambdas and Blocks with dependent return type can have their variables
> marked as NRVO Candidates.
>
> Variable instantiation improvements:
> * Fixes crash when instantiating NRVO variables in Blocks.
> * Functions, Lambdas, and Blocks which have auto return type have their
> variables' NRVO status propagated. For Blocks with non-auto return type,
> as a limitation, this propagation does not consider the actual return
> type.
>
> This also implements exclusion of VarDecls which are references to
> dependent types.
>
> Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
>
> Reviewed By: Quuxplusone
>
> Differential Revision: https://reviews.llvm.org/D99696
This also reverts the follow-on change which was hard to tease apart
form the one above:
> "[clang] Implement P2266 Simpler implicit move"
>
> This Implements [[http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2266r1.html|P2266 Simpler implicit move]].
>
> Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
>
> Reviewed By: Quuxplusone
>
> Differential Revision: https://reviews.llvm.org/D99005
This reverts commits 1e50c3d785 and
bf20631782.
There's no need to pass `DependencyOutputOptions` to each call of `handleFileDependency`, since the options don't ever change.
This patch adds new `handleDependencyOutputOpts` method to the `DependencyConsumer` interface and the dependency scanner uses it to report the options only once.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D104104
One of the goals of the dependency scanner is to generate command-lines that can be used to explicitly build modular dependencies of a translation unit. The only modifications to these command-lines should be for the purposes of explicit modular build.
However, the current version of dependency scanner leaks its implementation details into the command-lines.
The first problem is that the `clang-scan-deps` tool adjusts the original textual command-line (adding `-Eonly -M -MT <target> -sys-header-deps -Wno-error -o /dev/null `, removing `--serialize-diagnostics`) in order to set up the `DependencyScanning` library. This has been addressed in D103461, D104012, D104030, D104031, D104033. With these patches, the `DependencyScanning` library receives the unmodified `CompilerInvocation`, sets it up and uses it for the implicit modular build.
Finally, to prevent leaking the implementation details to the resulting command-lines, this patch generates them from the **original** unmodified `CompilerInvocation` rather than from the one that drives the implicit build.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D104036
To prevent the creation of diagnostics file, `clang-scan-deps` strips the corresponding command-line argument. This behavior is useful even when using the C++ `DependencyScanner` library.
This patch transforms stripping of command-line in `clang-scan-deps` into stripping of `CompilerInvocation` in `DependencyScanning`.
AFAIK, the `clang-cl` driver doesn't even accept `--serialize-diagnostics`, so I've removed the test. (It would fail with an unknown command-line argument otherwise.)
Note: Since we're generating command-lines for modular dependencies from `CompilerInvocation`, the `--serialize-diagnostics` will be dropped. This was already happening in `clang-scan-deps` before this patch, but it will now happen also when using `DependencyScanning` library directly. This is resolved in D104036.
Reviewed By: dexonsmith, arphaman
Differential Revision: https://reviews.llvm.org/D104012
Update `setConstraint` to simplify existing equivalence classes when a
new constraint is added. In this patch we iterate over all existing
equivalence classes and constraints and try to simplfy them with
simplifySVal. This solves problematic cases where we have two symbols in
the tree, e.g.:
```
int test_rhs_further_constrained(int x, int y) {
if (x + y != 0)
return 0;
if (y != 0)
return 0;
clang_analyzer_eval(x + y == 0); // expected-warning{{TRUE}}
clang_analyzer_eval(y == 0); // expected-warning{{TRUE}}
return 0;
}
```
Differential Revision: https://reviews.llvm.org/D103314
When a translation unit uses a PCH and imports the same modules as the PCH, we'd prefer to resolve to those modules instead of inventing new modules and reporting them as modular dependencies. Since the PCH modules have already been built nudge the compiler to reuse them when deciding whether to build a new module and don't report them as regular modular dependencies.
Depends on D103524 & D103802.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D103526
The `PreprocessOnlyAction` doesn't support loading the AST file of a precompiled header. This is problematic for dependency scanning, since the `#include` manufactured for the PCH is treated as textual. This means the PCH contents get scanned with each TU, which is redundant. Moreover, dependencies of the PCH end up being considered dependency of the TU.
To handle AST file of PCH properly, this patch creates new `FrontendAction` that behaves the same way `PreprocessorOnlyAction` does, but treats the manufactured PCH `#include` as a normal compilation would (by not claiming it only uses a preprocessor and creating the default AST consumer).
The AST file is now reported as a file dependency of the TU.
Depends on D103519.
Reviewed By: Bigcheese
Differential Revision: https://reviews.llvm.org/D103524
It's useful to be able to load explicitly-built PCH files into an implicit build (e.g. during dependency scanning). That's currently impossible, since the explicitly-built PCH has an empty modules cache path, while the current compilation has (and needs to have) a valid path, triggering an error in the `PCHValidator`.
This patch adds a preprocessor option and command-line flag that can be used to omit this check.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D103802
This patch addresses a performance issue I noticed when using clang-12 to compile projects of mine. Even though the files weren't too large (around 1k cpp), the compiler was taking more than a minute to compile the source file, much longer than either GCC or MSVC.
Using a profiler it turned out the issue was the isAnyDestructorNoReturn function in CXXRecordDecl. In particular it being recursive, recalculating the property for every invocation, for every field and base class. This showed up in tracebacks in the profiler.
This patch instead adds IsAnyDestructorNoReturn as a Field to the data inside of CXXRecord and updates when a new base class, destructor, or record field member is added.
After this patch the problematic file of mine went from a compile time of 81s, down to 12s.
The patch itself should not change any functionality, just improve performance.
Differential Revision: https://reviews.llvm.org/D104182
This expands NRVO propagation for more cases:
Parse analysis improvement:
* Lambdas and Blocks with dependent return type can have their variables
marked as NRVO Candidates.
Variable instantiation improvements:
* Fixes crash when instantiating NRVO variables in Blocks.
* Functions, Lambdas, and Blocks which have auto return type have their
variables' NRVO status propagated. For Blocks with non-auto return type,
as a limitation, this propagation does not consider the actual return
type.
This also implements exclusion of VarDecls which are references to
dependent types.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: Quuxplusone
Differential Revision: https://reviews.llvm.org/D99696
Also:
- add driver test (fsanitize-use-after-return.c)
- add basic IR test (asan-use-after-return.cpp)
- (NFC) cleaned up logic for generating table of __asan_stack_malloc
depending on flag.
for issue: https://github.com/google/sanitizers/issues/1394
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D104076
Check applied to unbounded (incomplete) arrays and pointers to spot
cases where the computed address is beyond the largest possible
addressable extent of the array, based on the address space in which the
array is delcared, or which the pointer refers to.
Check helps to avoid cases of nonsense pointer math and array indexing
which could lead to linker failures or runtime exceptions. Of
particular interest when building for embedded systems with small
address spaces.
This is version 2 of this patch -- version 1 had some testing issues
due to a sign error in existing code. That error is corrected and
lit test for this chagne is extended to verify the fix.
Originally reviewed/accepted by: aaron.ballman
Original revision: https://reviews.llvm.org/D86796
Reviewed By: aaron.ballman, ebevhan
Differential Revision: https://reviews.llvm.org/D88174
Check applied to unbounded (incomplete) arrays and pointers to spot
cases where the computed address is beyond the largest possible
addressable extent of the array, based on the address space in which the
array is delcared, or which the pointer refers to.
Check helps to avoid cases of nonsense pointer math and array indexing
which could lead to linker failures or runtime exceptions. Of
particular interest when building for embedded systems with small
address spaces.
This is version 2 of this patch -- version 1 had some testing issues
due to a sign error in existing code. That error is corrected and
lit test for this chagne is extended to verify the fix.
Originally reviewed/accepted by: aaron.ballman
Original revision: https://reviews.llvm.org/D86796
Reviewed By: aaron.ballman, ebevhan
Differential Revision: https://reviews.llvm.org/D88174
Given `int foo, bar;`, TraverseAST reveals this tree:
TranslationUnitDecl
- foo
- bar
Before this patch, with the TraversalScope set to {foo}, TraverseAST yields:
foo
After this patch it yields:
TranslationUnitDecl
- foo
Also, TraverseDecl(TranslationUnitDecl) now respects the traversal scope.
---
The main effect of this today is that clang-tidy checks that match the
translationUnitDecl(), either in order to traverse it or check
parentage, should work.
Differential Revision: https://reviews.llvm.org/D104071
<string> is currently the highest impact header in a clang+llvm build:
https://commondatastorage.googleapis.com/chromium-browser-clang/llvm-include-analysis.html
One of the most common places this is being included is the APInt.h header, which needs it for an old toString() implementation that returns std::string - an inefficient method compared to the SmallString versions that it actually wraps.
This patch replaces these APInt/APSInt methods with a pair of llvm::toString() helpers inside StringExtras.h, adjusts users accordingly and removes the <string> from APInt.h - I was hoping that more of these users could be converted to use the SmallString methods, but it appears that most end up creating a std::string anyhow. I avoided trying to use the raw_ostream << operators as well as I didn't want to lose having the integer radix explicit in the code.
Differential Revision: https://reviews.llvm.org/D103888
This component should not be used directly at this point and it is
simply an implementation detail, that's why StoreSiteFinder is
out of the header file.
Differential Revision: https://reviews.llvm.org/D103624
Additionally, this commit completely removes any uses of
FindLastStoreBRVisitor from the analyzer except for the
one in Tracker.
The next step is actually removing this class altogether
from the header file.
Differential Revision: https://reviews.llvm.org/D103618
Tracking values through expressions and the stores is fundamental
for producing clear diagnostics. However, the main components
participating in this process, namely `trackExpressionValue` and
`FindLastStoreBRVisitor`, became pretty bloated. They have an
interesting dynamic between them (and some other visitors) that
one might call a "chain reaction". `trackExpressionValue` adds
`FindLastStoreBRVisitor`, and the latter calls `trackExpressionValue`.
Because of this design, individual checkers couldn't affect what's
going to happen somewhere in the middle of that chain. Whether they
want to produce a more informative note or keep the overall tracking
going by utilizing some of the domain expertise. This all lead to two
biggest problems that I see:
* Some checkers don't use it
This should probably never be the case for path-sensitive checks.
* Some checkers incorporated their logic directly into those
components
This doesn't make the maintenance easier, breaks multiple
architecture principles, and makes the code harder to read adn
understand, thus, increasing the probability of the first case.
This commit introduces a prototype for a new interface that will be
responsible for tracking. My main idea here was to make operations
that I want have as a checker developer easy to implement and hook
directly into the tracking process.
Differential Revision: https://reviews.llvm.org/D103605
-Wframe-larger-than= is an interesting warning; we can't know the frame
size until PrologueEpilogueInsertion (PEI); very late in the compilation
pipeline.
-Wframe-larger-than= was propagated through CC1 as an -mllvm flag, then
was a cl::opt in LLVM's PEI pass; this meant it was dropped during LTO
and needed to be re-specified via -plugin-opt.
Instead, make it part of the IR proper as a module level attribute,
similar to D103048. Introduce -fwarn-stack-size CC1 option.
Reviewed By: rsmith, qcolombet
Differential Revision: https://reviews.llvm.org/D103928
This expands NRVO propagation for more cases:
Parse analysis improvement:
* Lambdas and Blocks with dependent return type can have their variables
marked as NRVO Candidates.
Variable instantiation improvements:
* Fixes crash when instantiating NRVO variables in Blocks.
* Functions, Lambdas, and Blocks which have auto return type have their
variables' NRVO status propagated. For Blocks with non-auto return type,
as a limitation, this propagation does not consider the actual return
type.
This also implements exclusion of VarDecls which are references to
dependent types.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: Quuxplusone
Differential Revision: https://reviews.llvm.org/D99696
Implementation of the unroll directive introduced in OpenMP 5.1. Follows the approach from D76342 for the tile directive (i.e. AST-based, not using the OpenMPIRBuilder). Tries to use `llvm.loop.unroll.*` metadata where possible, but has to fall back to an AST representation of the outer loop if the partially unrolled generated loop is associated with another directive (because it needs to compute the number of iterations).
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D99459
This patch adds the command line options /permissive and /permissive- to clang-cl. These flags are used in MSVC to enable various /Zc language conformance options at once. In particular, /permissive is used to enable the various non standard behaviour of MSVC, while /permissive- is the opposite.
When either of two command lines are specified they are simply expanded to the various underlying /Zc options. In particular when /permissive is passed it currently expands to:
/Zc:twoPhase- (disable two phase lookup)
-fno-operator-names (disable C++ operator keywords)
/permissive- expands to the opposites of these flags + /Zc:strictStrings (/Zc:strictStrings- does not currently exist). In the future, if any more MSVC workarounds are ever added they can easily be added to the expansion. One is also able to override settings done by permissive. Specifying /permissive- /Zc:twoPhase- will apply the settings from permissive minus, but disables two phase lookup.
Motivation for this patch was mainly parity with MSVC as well as compatibility with Windows SDK headers. The /permissive page from MSVC documents various workarounds that have to be done for the Windows SDK headers [1], when MSVC is used with /permissive-. In these, Microsoft often recommends simply compiling with /permissive for the specified source files. Since some of these also apply to clang-cl (which acts like /permissive- by default mostly), and some are currently implemented as "hacks" within clang that I'd like to remove, adding /permissive and /permissive- to be in full parity with MSVC and Microsofts documentation made sense to me.
[1] https://docs.microsoft.com/en-us/cpp/build/reference/permissive-standards-conformance?view=msvc-160#windows-header-issues
Differential Revision: https://reviews.llvm.org/D103773
This patch adds the command line option -foperator-names which acts as the opposite of -fno-operator-names. With this command line option it is possible to reenable C++ operator keywords on the command line if -fno-operator-names had previously been passed.
Differential Revision: https://reviews.llvm.org/D103749
Before this change, CXXDefaultArgExpr would always have
ExprDependence::None. This can lead to issues when, for example, the
inner expression is RecoveryExpr and yet containsErrors() on the default
expression is false.
Differential Revision: https://reviews.llvm.org/D103982
Added --gpu-bundle-output to control bundling/unbundling output of HIP device compilation.
By default preprocessor expansion, llvm bitcode and assembly are unbundled, code objects are
bundled.
Reviewed by: Artem Belevich, Jan Svoboda
Differential Revision: https://reviews.llvm.org/D101630
The MathExtras.h header is included purely for the countPopulation() method - by moving this into Sanitizers.cpp we can remove the use of this costly header.
We only ever use isPowerOf2() / countPopulation() inside asserts so this shouldn't have any performance effects on production code.
Differential Revision: https://reviews.llvm.org/D103953
This is a follow up to the "rvalue-to-prvalue" rename at D103720.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Depends on D103720
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D103933
This renames the expression value categories from rvalue to prvalue,
keeping nomenclature consistent with C++11 onwards.
C++ has the most complicated taxonomy here, and every other language
only uses a subset of it, so it's less confusing to use the C++ names
consistently, and mentally remap to the C names when working on that
context (prvalue -> rvalue, no xvalues, etc).
Renames:
* VK_RValue -> VK_PRValue
* Expr::isRValue -> Expr::isPRValue
* SK_QualificationConversionRValue -> SK_QualificationConversionPRValue
* JSON AST Dumper Expression nodes value category: "rvalue" -> "prvalue"
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D103720
This implements the 'using enum maybe-qualified-enum-tag ;' part of
1099. It introduces a new 'UsingEnumDecl', subclassed from
'BaseUsingDecl'. Much of the diff is the boilerplate needed to get the
new class set up.
There is one case where we accept ill-formed, but I believe this is
merely an extended case of an existing bug, so consider it
orthogonal. AFAICT in class-scope the c++20 rule is that no 2 using
decls can bring in the same target decl ([namespace.udecl]/8). But we
already accept:
struct A { enum { a }; };
struct B : A { using A::a; };
struct C : B { using A::a;
using B::a; }; // same enumerator
this patch permits mixtures of 'using enum Bob;' and 'using Bob::member;' in the same way.
Differential Revision: https://reviews.llvm.org/D102241
They are still unsupported, but at least this makes clang-cl not mistake
them for being filenames.
As pointed out in the bug, VS 16.10 now uses these flags in new projects
by default.
This adds support for p1099's 'using SCOPED_ENUM::MEMBER;'
functionality, bringing a member of an enumerator into the current
scope. The novel feature here, is that there need not be a class
hierarchical relationship between the current scope and the scope of
the SCOPED_ENUM. That's a new thing, the closest equivalent is a
typedef or alias declaration. But this means that
Sema::CheckUsingDeclQualifier needs adjustment. (a) one can't call it
until one knows the set of decls that are being referenced -- if
exactly one is an enumerator, we're in the new territory. Thus it
needs calling later in some cases. Also (b) there are two ways we hold
the set of such decls. During parsing (or instantiating a dependent
scope) we have a lookup result, and during instantiation we have a set
of shadow decls. Thus two optional arguments, at most one of which
should be non-null.
Differential Revision: https://reviews.llvm.org/D100276
Summary: Replaced code on region cast with a function-wrapper SValBuilder::getCastedMemRegionVal. This is a next step of code refining due to suggestions in D103319.
Differential Revision: https://reviews.llvm.org/D103803
This implements support for using libc++ headers and library in the MSVC
toolchain. We only support libc++ that is a part of the toolchain, and
not headers installed elsewhere on the system.
Differential Revision: https://reviews.llvm.org/D101479
Adding the `-init-only` option and corresponding frontend action to
generate a diagnostic.
`-init-only` vs `-test-io`:
`-init-only` ignores the input (it never calls the prescanner)
`-test-io` is similar to `-init-only`, but does read and print the input
without calling the prescanner.
This patch also adds a Driver test to check this action.
Reviewed By: awarzynski, AMDChirag
Differential Revision: https://reviews.llvm.org/D102849
This prepatch for using-enum breaks out the enum completion that that
will need from the existing scope completion logic.
Differential Revision: https://reviews.llvm.org/D102239
This is a pre-patch for adding using-enum support. It breaks out
the shadow decl handling of UsingDecl to a new intermediate base
class, BaseUsingDecl, altering the decl hierarchy to
def BaseUsing : DeclNode<Named, "", 1>;
def Using : DeclNode<BaseUsing>;
def UsingPack : DeclNode<Named>;
def UsingShadow : DeclNode<Named>;
def ConstructorUsingShadow : DeclNode<UsingShadow>;
Differential Revision: https://reviews.llvm.org/D101777
The current method getSingleClause requires an instance of OMPExecutableDirective to be called. Introduce a static version taking a list of clauses as argument instead that can be used during parsing/Sema before any OMPExecutableDirective has been created.
This is the same approach as taken for getClausesOfKind for getting more more than a single clause of a type which also has a method and static version. NFC patch extracted out of D99459 by request.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D103665
This option is supported in `f18`, but not yet available in `flang-new`.
It is required in order to call `flang-new` from the `flang` bash
script.
Differential Revision: https://reviews.llvm.org/D103613
Dependency scanning currently performs an implicit build. When testing that Clang can build modules with the command-lines generated by `clang-scan-deps`, the actual compilation would overwrite artifacts created during the scan, which makes debugging harder than it should be and can lead to errors in multi-step builds.
To prevent this, this patch adds new flag to `clang-scan-deps` that allows developers to customize the directory to use when generating module map paths, instead of always using the module cache. Moreover, the explicit context hash in now part of the PCM path, which will be useful in D102488, where the context hash can change due to command-line pruning.
Reviewed By: Bigcheese
Differential Revision: https://reviews.llvm.org/D103516
ParmVarDecl is created with translation unit as the parent DeclContext
and later moved to the correct DeclContext. ASTImporterLookupTable
should be updated at this move.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D103231
Currently some amdgcn builtins are defined with long int type,
which causes invalid IR on Windows since long int is 32 bit
on Windows whereas these builtins have 64 bit arguments.
long long int type cannot be used since it is 128 bit in OpenCL.
This patch uses 64 bit int type instead of long int to define 64 bit int
arguments or return for amdgcn builtins.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D103563
This is a followup to D103422. The DenseMapInfo implementations for
ArrayRef and StringRef are moved into the ArrayRef.h and StringRef.h
headers, which means that these two headers no longer need to be
included by DenseMapInfo.h.
This required adding a few additional includes, as many files were
relying on various things pulled in by ArrayRef.h.
Differential Revision: https://reviews.llvm.org/D103491
This allows to set a different indent width for preprocessor statements.
Example:
#ifdef __linux_
# define FOO
#endif
int main(void)
{
return 0;
}
Differential Revision: https://reviews.llvm.org/D103286
The majority of all `addVisitor` callers follow the same pattern:
addVisitor(std::make_unique<SomeVisitor>(arg1, arg2, ...));
This patches introduces additional overload for `addVisitor` to simplify
that pattern:
addVisitor<SomeVisitor>(arg1, arg2, ...);
Differential Revision: https://reviews.llvm.org/D103457
Summary:
suggestPathToFileForDiagnostics is actively used in clangd for converting
an absolute path to a header file to a header name as it should be spelled
in the sources. Current approach converts absolute path to relative path.
This diff implements missing logic that makes a reverse lookup from the
relative path to the key in the header map that should be used in the sources.
Prerequisite diff: https://reviews.llvm.org/D103229
Test Plan: check-clang
Reviewers: dexonsmith, bruno, rsmith
Subscribers: cfe-commits
Tasks:
Tags: #clang
Differential Revision: https://reviews.llvm.org/D103142
incorrect std::string use. (Also remove redundant call to
RemoveFileOnSignal.)
Clang writes object files by first writing to a .tmp file and then
renaming to the final .obj name. On Windows, if a compile is killed
partway through the .tmp files don't get deleted.
Currently it seems like RemoveFileOnSignal takes care of deleting the
tmp files on Linux, but on Windows we need to call
setDeleteDisposition on tmp files so that they are deleted when
closed.
This patch switches to using TempFile to create the .tmp files we write
when creating object files, since it uses setDeleteDisposition on Windows.
This change applies to both Linux and Windows for consistency.
Differential Revision: https://reviews.llvm.org/D102876
This reverts commit 20797b129f.
The PreInits of a loop transformation (atm moment only tile) include the computation of the trip count. The trip count is needed by any loop-associated directives that consumes the transformation-generated loop. Hence, we must ensure that the PreInits of consumed loop transformations are emitted with the consuming directive.
This is done by addinging the inner loop transformation's PreInits to the outer loop-directive's PreInits. The outer loop-directive will consume the de-sugared AST such that the inner PreInits are not emitted twice. The PreInits of a loop transformation are still emitted directly if its generated loop(s) are not associated with another loop-associated directive.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D102180
This patch adds support for matching gtest's ASSERT_THAT, EXPECT_THAT, ON_CALL and EXPECT_CALL macros.
Reviewed By: ymandel, hokein
Differential Revision: https://reviews.llvm.org/D103195
This attribute applies to a using declaration, and permits importing a
declaration without knowing if that declaration exists. This is useful
for libc++ C wrapper headers that re-export declarations in std::, in
cases where the base C library doesn't provide all declarations.
This attribute was proposed in http://lists.llvm.org/pipermail/cfe-dev/2020-June/066038.html.
rdar://69313357
Differential Revision: https://reviews.llvm.org/D90188
Recently we added diagnosing ODR-use of host variables
in device functions, which includes ODR-use of const
host variables since they are not really emitted on
device side. This caused regressions since we used
to allow ODR-use of const host variables in device
functions.
This patch allows ODR-use of const variables in device
functions if the const variables can be statically initialized
and have an empty dtor. Such variables are marked with
implicit constant attrs and emitted on device side. This is
in line with what clang does for constexpr variables.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D103108
Currently clang and nvcc use c++14 as default std for C++.
gcc 11 even uses c++17 as default std for C++. However,
clang uses c++98 as default std for CUDA/HIP.
As c++14 has been well adopted and became default for
clang, it seems reasonable to use c++14 as default std
for CUDA/HIP.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D103221
Clang writes object files by first writing to a .tmp file and then
renaming to the final .obj name. On Windows, if a compile is killed
partway through the .tmp files don't get deleted.
Currently it seems like RemoveFileOnSignal takes care of deleting the
tmp files on Linux, but on Windows we need to call
setDeleteDisposition on tmp files so that they are deleted when
closed.
This patch switches to using TempFile to create the .tmp files we write
when creating object files, since it uses setDeleteDisposition on Windows.
This change applies to both Linux and Windows for consistency.
Differential Revision: https://reviews.llvm.org/D102876
All fuchsia targets will now use the relative-vtables ABI by default.
Also remove -fexperimental-relative-c++-abi-vtables from test RUNs targeting fuchsia.
Differential Revision: https://reviews.llvm.org/D102374
We now make up a TypeLoc for the class receiver to simplify visiting,
notably for indexing, availability, and clangd.
Differential Revision: https://reviews.llvm.org/D101645
This is a re-application of dc67299 which was reverted in f63adf5b because
it broke the build. The issue should now be fixed.
Attribution note: The original author of this patch is Erik Pilkington.
I'm only trying to land it after rebasing.
Differential Revision: https://reviews.llvm.org/D91630
Summary: Make StoreManager::castRegion function usage safier. Replace `const MemRegion *` with `Optional<const MemRegion *>`. Simplified one of related test cases due to suggestions in D101635.
Differential Revision: https://reviews.llvm.org/D103319
This inheritance list style has been widely adopted by Symantec,
a division of Broadcom Inc. It breaks after the commas that
separate the base-specifiers:
class Derived : public Base1,
private Base2
{
};
Differential Revision: https://reviews.llvm.org/D103204
This is the first in a series of patches to provide builtins for
compatibility with the XL compiler. Most of the builtins already had
intrinsics and only needed to be implemented in the front end.
Intrinsics were created for the three iospace builtins, eieio, and icbt.
Pseudo instructions were created for eieio and iospace_eieio to
ensure that nops were inserted before the eieio instruction.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D102443
I discovered when merging the __builtin_sycl_unique_stable_name into my
downstream that it is actually possible for the cc1 invocation to have
more than 1 Sema instance, if you pass it multiple input files, each
gets its own Sema instance and thus ASTContext instance. The result was
that the call to Filter the SYCL kernels was using an
ItaniumMangleContext stored via a 'magic static', so it had an invalid
reference to ASTContext when processing the 2nd failure.
The failure is unfortunately flakey/transient, but the test that fails
was added anyway.
The magic-static was switched to a unique_ptr member variable in
ASTContext that is initialized when needed.
Like other sanitizers, enable __has_feature(coverage_sanitizer) if clang
has enabled at least one SanitizerCoverage instrumentation type.
Because coverage instrumentation selection is not handled via normal
-fsanitize= (and thus not in SanitizeSet), passing this information
through to LangOptions required propagating the already parsed
-fsanitize-coverage= options from CodeGenOptions through to LangOptions
in FixupInvocation().
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D103159
The original version of this was reverted, and @rjmcall provided some
advice to architect a new solution. This is that solution.
This implements a builtin to provide a unique name that is stable across
compilations of this TU for the purposes of implementing the library
component of the unnamed kernel feature of SYCL. It does this by
running the Itanium mangler with a few modifications.
Because it is somewhat common to wrap non-kernel-related lambdas in
macros that aren't present on the device (such as for logging), this
uniquely generates an ID for all lambdas involved in the naming of a
kernel. It uses the lambda-mangling number to do this, except replaces
this with its own number (starting at 10000 for readabililty reasons)
for lambdas used to name a kernel.
Additionally, this implements itself as constexpr with a slight catch:
if a name would be invalidated by the use of this lambda in a later
kernel invocation, it is diagnosed as an error (see the Sema tests).
Differential Revision: https://reviews.llvm.org/D103112
WG14 adopted N2645 and WG21 EWG has accepted P2334 in principle (still
subject to full EWG vote + CWG review + plenary vote), which add
support for #elifdef as shorthand for #elif defined and #elifndef as
shorthand for #elif !defined. This patch adds support for the new
preprocessor directives.
VS 2019 16.11 (just released in Preview) is adding support for the
/std:c++20 option and bumping /std:c++latest to "post-c++20". This
updates clang-cl to match.
Differential revision: https://reviews.llvm.org/D103155
We really ought to support no_sanitize("coverage") in line with other
sanitizers. This came up again in discussions on the Linux-kernel
mailing lists, because we currently do workarounds using objtool to
remove coverage instrumentation. Since that support is only on x86, to
continue support coverage instrumentation on other architectures, we
must support selectively disabling coverage instrumentation via function
attributes.
Unfortunately, for SanitizeCoverage, it has not been implemented as a
sanitizer via fsanitize= and associated options in Sanitizers.def, but
rolls its own option fsanitize-coverage. This meant that we never got
"automatic" no_sanitize attribute support.
Implement no_sanitize attribute support by special-casing the string
"coverage" in the NoSanitizeAttr implementation. To keep the feature as
unintrusive to existing IR generation as possible, define a new negative
function attribute NoSanitizeCoverage to propagate the information
through to the instrumentation pass.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=49035
Reviewed By: vitalybuka, morehouse
Differential Revision: https://reviews.llvm.org/D102772
..during on-demand parsing of CTU"
During CTU, the *on-demand parsing* will read and parse the invocation
list to know how to compile the file being imported. However, it seems
that the invocation list will be parsed again if a previous parsing
has failed.
Then, parse again and fail again. This patch tries to overcome the
problem by storing the error code during the first parsing, and
re-create the stored error during the later parsings.
Reland without test.
Reviewed By: steakhal
Patch By: OikawaKirie!
Differential Revision: https://reviews.llvm.org/D101763
During CTU, the *on-demand parsing* will read and parse the invocation
list to know how to compile the file being imported. However, it seems
that the invocation list will be parsed again if a previous parsing
has failed.
Then, parse again and fail again. This patch tries to overcome the
problem by storing the error code during the first parsing, and
re-create the stored error during the later parsings.
Reviewed By: steakhal
Patch By: OikawaKirie!
Differential Revision: https://reviews.llvm.org/D101763
GCC allows each target to define a set of non-letter and non-digit
escaped characters for inline assembly that will be replaced by another
string (They call this "punctuation" characters. The existing "%%" and
"%{" -- replaced by '%' and '{' at the end -- can be seen as special
cases shared by all targets).
This patch implements this feature by adding a new hook in `TargetInfo`.
Differential Revision: https://reviews.llvm.org/D103036
This fixes both https://bugs.llvm.org/show_bug.cgi?id=50309 and https://bugs.llvm.org/show_bug.cgi?id=50310.
Previously, lambdas inside functions would mark their own bodies for later analysis when encountering a potentially unavailable decl, without taking into consideration that the entire lambda itself might be correctly guarded inside an @available check. The same applied to inner class member functions. Blocks happened to work as expected already, since Sema::getEnclosingFunction() skips through block scopes.
This patch instead simply and conservatively marks the entire outermost function scope for search, and removes some special-case logic that prevented DiagnoseUnguardedAvailabilityViolations from traversing down into lambdas and nested functions. This correctly accounts for arbitrarily nested lambdas, inner classes, and blocks that may be inside appropriate @available checks at any ancestor level. It also treats all potential availability violations inside functions consistently, without being overly sensitive to the current DeclContext, which previously caused issues where e.g. nested struct members were warned about twice.
DiagnoseUnguardedAvailabilityViolations now has more work to do in some cases, particularly in functions with many (possibly deeply) nested lambdas and classes, but the big-O is the same, and the simplicity of the approach and the fact that it fixes at least two bugs feels like a strong win.
Differential Revision: https://reviews.llvm.org/D102338
The diff adds Remark to Diagnostic::Level for clang tooling. That makes
Remark diagnostic level ready to use in clang-tidy checks: the
clang-diagnostic-module-import becomes visible as a part of the change.
Allow use of bit-fields as a clang extension
in OpenCL. The extension can be enabled using
pragma directives.
This fixes PR45339!
Differential Revision: https://reviews.llvm.org/D101843
Add options -[no-]offload-lto and -foffload-lto=[thin,full] for controlling
LTO for offload compilation. Allow LTO for AMDGPU target.
AMDGPU target does not support codegen of object files containing
call of external functions, therefore the LLVM module passed to
AMDGPU backend needs to contain definitions of all the callees.
An LLVM option is added to allow function importer to import
functions with noinline attribute.
HIP toolchain passes proper LLVM options to lld to make sure
function importer imports definitions of all the callees.
Reviewed by: Teresa Johnson, Artem Belevich
Differential Revision: https://reviews.llvm.org/D99683
D88631 added initial support for:
- -mstack-protector-guard=
- -mstack-protector-guard-reg=
- -mstack-protector-guard-offset=
flags, and D100919 extended these to AArch64. Unfortunately, these flags
aren't retained for LTO. Make them module attributes rather than
TargetOptions.
Link: https://github.com/ClangBuiltLinux/linux/issues/1378
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D102742
There already exists cl_khr_fp64 extension. So OpenCL C 3.0
and higher should use the feature, earlier versions still
use the extension. OpenCL C 3.0 API spec states that extension
will be not described in the option string if corresponding
optional functionality is not supported (see 4.2. Querying Devices).
Due to that fact the usage of features for OpenCL C 3.0 must
be as follows:
```
$ clang -Xclang -cl-ext=+cl_khr_fp64,+__opencl_c_fp64 ...
$ clang -Xclang -cl-ext=-cl_khr_fp64,-__opencl_c_fp64 ...
```
e.g. the feature and the equivalent extension (if exists)
must be set to the same values
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D96524
D98794 added the DirectAttr/IndirectAttr struct fields to that union, but
declaring anonymous structs in an anonymous union triggers `-Wnested-anon-types`
warnings. We can't just give them a name as they are in an anonymous union, so
this just declares the type outside.
```
clang/include/clang/CodeGen/CGFunctionInfo.h:97:5: warning: anonymous types declared in an anonymous union are an extension [-Wnested-anon-types]
struct {
^
clang/include/clang/CodeGen/CGFunctionInfo.h:101:5: warning: anonymous types declared in an anonymous union are an extension [-Wnested-anon-types]
struct {
^
```
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D102903
Instead of ignoring flto=auto and -flto=jobserver, treat them as -flto
and pass -flto=full along.
Differential Revision: https://reviews.llvm.org/D102479
Reduce memory footprint of AST Reader/Writer:
1. Adjust internal data containers' element type.
2. Switch to set for deduplication of deferred diags.
Differential Revision: https://reviews.llvm.org/D101793
variables emitted on both host and device side with different addresses
when ODR-used by host function should not cause device side counter-part
to be force emitted.
This fixes the regression caused by https://reviews.llvm.org/D102237
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D102801
Add `-ffixed-a[0-6]` and `-ffixed-d[0-7]` and the corresponding
subtarget features to prevent certain register from being allocated.
Differential Revision: https://reviews.llvm.org/D102805
We were always storing a regular ValueDecl* as decomposition declaration
and haven't been using the opportunity to initialize it lazily.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D99455
This reverts commit 2919222d80.
That commit broke backwards compatibility. Additionally, the
replacement, -Wa,-mimplicit-it, isn't yet supported by any stable
release of Clang.
See D102812 for a fix for the error cases when callers specify both
-mimplicit-it and -Wa,-mimplicit-it.
when implementing an optional protocol requirement
When an Objective-C method implements an optional protocol requirement,
allow the method to use a newer introduced or older obsoleted
availability version than what's specified on the method in the protocol
itself. This allows SDK adopters to adopt an optional method from a
protocol later than when the method is introduced in the protocol. The users
that call an optional method on an object that conforms to this protocol
are supposed to check whether the object implements the method or not,
so a lack of appropriate `if (@available)` check for a new OS version
is not a cause of concern as there's already another runtime check that's required.
Differential Revision: https://reviews.llvm.org/D102459