This particularly helps the fidelity of ASan reports (which can occur
even in these examples - if, for example, one uses placement new over a
buffer of insufficient size - now ASan will correctly identify which
member's initialization went over the end of the buffer).
This doesn't cover all types of members - more coming.
llvm-svn: 223726
used inside blocks. It fixes a crash in naming code
for __func__ etc. when used in a block declared globally.
It also brings back old naming convention for
predefined expression which was broken. rdar://18961148
llvm-svn: 222065
Summary:
This change makes CodeGenFunction::EmitCheck() take several
conditions that needs to be checked (all of them need to be true),
together with sanitizer kinds these checks are for. This would allow
to split one call into UBSan runtime into several calls in case
different sanitizer kinds would have different recoverability
settings.
Tests should be fixed accordingly, I'm working on it.
Test Plan: regression test suite.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D6219
llvm-svn: 221716
For all threadprivate variables which have constructor/destructor emit call to void __kmpc_threadprivate_register(ident_t * <Current Location>, void *<Original Global Addr>, kmpc_ctor <Constructor>, kmpc_cctor NULL, kmpc_dtor <Destructor>);
In expressions all references to such variables are replaced by calls to void *__kmpc_threadprivate_cached(ident_t *<Current Location>, kmp_int32 <Current Thread Id>, void *<Original Global Addr>, size_t <Size of Data>, void ***<Pointer to autogenerated cache – array of private copies of threadprivate variable>);
Test test/OpenMP/threadprivate_codegen.cpp checks that codegen is correct. Also it checks that codegen is correct after serialization/deserialization and one of passes verifies debug info.
Differential Revision: http://reviews.llvm.org/D4002
llvm-svn: 221663
Make sure CodeGenFunction::EmitCheck() knows which sanitizer
it emits check for. Make CheckRecoverableKind enum an
implementation detail and move it away from header.
Currently CheckRecoverableKind is determined by the type of
sanitizer ("unreachable" and "return" are unrecoverable,
"vptr" is always-recoverable, all the rest are recoverable).
This will change in future if we allow to specify which sanitizers
are recoverable, and which are not by -fsanitize-recover= flag.
No functionality change.
llvm-svn: 221635
Use the bitmask to store the set of enabled sanitizers instead of a
bitfield. On the negative side, it makes syntax for querying the
set of enabled sanitizers a bit more clunky. On the positive side, we
will be able to use SanitizerKind to eventually implement the
new semantics for -fsanitize-recover= flag, that would allow us
to make some sanitizers recoverable, and some non-recoverable.
No functionality change.
llvm-svn: 221558
SanitizerOptions is not even a POD now, so having global variable of
this type, is not nice. Instead, provide a regular constructor and clear()
method, and let each CodeGenFunction has its own copy of SanitizerOptions
it uses.
llvm-svn: 220920
Avoid an assertion when materializing a lifetime type aggregate temporary. When
performing CodeGen for ObjC++, we could generate a lifetime-only aggregate
temporary by using an initializer list (which is effectively an array). We
would reach through the temporary expression, fishing out the inner expression.
If this expression was a lifetime expression, we would attempt to emit this as a
scalar. This would eventually result in an assertion as the emission would
eventually assert that the expression being emitted has a scalar evaluation
kind.
Add a case to handle the aggregate expressions. Use the EmitAggExpr to emit the
aggregate expression rather than the EmitScalarInit.
Addresses PR21347.
llvm-svn: 220590
This commit changes the way we blacklist functions in ASan, TSan,
MSan and UBSan. We used to treat function as "blacklisted"
and turned off instrumentation in it in two cases:
1) Function is explicitly blacklisted by its mangled name.
This part is not changed.
2) Function is located in llvm::Module, whose identifier is
contained in the list of blacklisted sources. This is completely
wrong, as llvm::Module may not correspond to the actual source
file function is defined in. Also, function can be defined in
a header, in which case user had to blacklist the .cpp file
this header was #include'd into, not the header itself.
Such functions could cause other problems - for instance, if the
header was included in multiple source files, compiled
separately and linked into a single executable, we could end up
with both instrumented and non-instrumented version of the same
function participating in the same link.
After this change we will make blacklisting decision based on
the SourceLocation of a function definition. If a function is
not explicitly defined in the source file, (for example, the
function is compiler-generated and responsible for
initialization/destruction of a global variable), then it will
be blacklisted if the corresponding global variable is defined
in blacklisted source file, and will be instrumented otherwise.
After this commit, the active users of blacklist files may have
to revisit them. This is a backwards-incompatible change, but
I don't think it's possible or makes sense to support the
old incorrect behavior.
I plan to make similar change for blacklisting GlobalVariables
(which is ASan-specific).
llvm-svn: 219997
The functionality contained in CodeGenFunction::EmitAlignmentAssumption has
been moved to IRBuilder (so that it can also be used by LLVM-level code).
Remove this now-duplicate implementation in favor of the IRBuilder code.
llvm-svn: 219877
This change adds UBSan check to upcasts. Namely, when we
perform derived-to-base conversion, we:
1) check that the pointer-to-derived has suitable alignment
and underlying storage, if this pointer is non-null.
2) if vptr-sanitizer is enabled, and we perform conversion to
virtual base, we check that pointer-to-derived has a matching vptr.
llvm-svn: 219642
Assertion failed: "Computed __func__ length differs from type!"
Reworked PredefinedExpr representation with internal StringLiteral field for function declaration.
Differential Revision: http://reviews.llvm.org/D5365
llvm-svn: 219393
Summary:
Previously CodeGen assumed that static locals were emitted before they
could be accessed, which is true for automatic storage duration locals.
However, it is possible to have CodeGen emit a nested function that uses
a static local before emitting the function that defines the static
local, breaking that assumption.
Fix it by creating the static local upon access and ensuring that the
deferred function body gets emitted. We may not be able to emit the
initializer properly from outside the function body, so don't try.
Fixes PR18020. See also previous attempts to fix static locals in
PR6769 and PR7101.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4787
llvm-svn: 219265
Summary:
This add support for the C++11 feature, thread_local global variables.
The ABI Clang implements is an improvement of the MSVC ABI. Sadly,
further improvements could be made but not without sacrificing ABI
compatibility.
The feature is implemented as follows:
- All thread_local initialization routines are pointed to from the
.CRT$XDU section.
- All non-weak thread_local variables have their initialization routines
call from a single function instead of getting their own .CRT$XDU
section entry. This is done to open up optimization opportunities to
the compiler.
- All weak thread_local variables have their own .CRT$XDU section entry.
This entry is in a COMDAT with the global variable it is initializing;
this ensures that we will initialize the global exactly once.
- Destructors are registered in the initialization function using
__tlregdtor.
Differential Revision: http://reviews.llvm.org/D5597
llvm-svn: 219074
Summary:
This patch implements a new UBSan check, which verifies
that function arguments declared to be nonnull with __attribute__((nonnull))
are actually nonnull in runtime.
To implement this check, we pass FunctionDecl to CodeGenFunction::EmitCallArgs
(where applicable) and if function declaration has nonnull attribute specified
for a certain formal parameter, we compare the corresponding RValue to null as
soon as it's calculated.
Test Plan: regression test suite
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits, rnk
Differential Revision: http://reviews.llvm.org/D5082
llvm-svn: 217389
This makes use of the recently-added @llvm.assume intrinsic to implement a
__builtin_assume(bool) intrinsic (to provide additional information to the
optimizer). This hooks up __assume in MS-compatibility mode to mirror
__builtin_assume (the semantics have been intentionally kept compatible), and
implements GCC's __builtin_assume_aligned as assume((p - o) & mask == 0). LLVM
now contains special logic to deal with assumptions of this form.
llvm-svn: 217349
Summary:
This is a first small step towards passing generic "Expr" instead of
ArgBeg/ArgEnd pair into EmitCallArgs() family of methods. Having "Expr" will
allow us to get the corresponding FunctionDecl and its ParmVarDecls,
thus allowing us to alter CodeGen depending on the function/parameter
attributes.
No functionality change.
Test Plan: regression test suite
Reviewers: rnk
Reviewed By: rnk
Subscribers: aemerson, cfe-commits
Differential Revision: http://reviews.llvm.org/D4915
llvm-svn: 216214
It is responsible for generating metadata consumed by sanitizer instrumentation
passes in the backend. Move several methods from CodeGenModule to SanitizerMetadata.
For now the class is stateless, but soon it won't be the case.
Instead of creating globals providing source-level information to ASan, we will create
metadata nodes/strings which will be turned into actual global variables in the
backend (if needed).
No functionality change.
llvm-svn: 214564
This broke the following gdb tests:
gdb.base__annota1.exp
gdb.base__consecutive.exp
gdb.python__py-symtab.exp
gdb.reverse__consecutive-precsave.exp
gdb.reverse__consecutive-reverse.exp
I will look into this.
This reverts commit 214162.
llvm-svn: 214163
This allows us to give more precise diagnostics.
Diego kindly tested the impact on debug info size: "The increase on average
debug sizes is 0.1%. The total file size increase is ~0%."
llvm-svn: 214162
Otherwise -fsanitize=vptr causes the program to crash when it downcasts
a null pointer.
Reviewed in http://reviews.llvm.org/D4412.
Patch by Byoungyoung Lee!
llvm-svn: 213393
Summary:
This change adds description of globals created by UBSan
instrumentation (UBSan handlers, type descriptors, filenames) to
llvm.asan.globals metadata, effectively "blacklisting" them. This can
dramatically decrease the data section in binaries built with UBSan+ASan,
as UBSan tends to create a lot of handlers, and ASan instrumentation
increases the global size to at least 64 bytes.
Test Plan: clang regression test suite
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits, byoungyoung, kcc
Differential Revision: http://reviews.llvm.org/D4575
llvm-svn: 213392
This is used to mark the instructions emitted by Clang to implement
variety of UBSan checks. Generally, we don't want to instrument these
instructions with another sanitizers (like ASan).
Reviewed in http://reviews.llvm.org/D4544
llvm-svn: 213291
Teach UBSan vptr checker to ignore technically invalud down-casts on
blacklisted types.
Based on http://reviews.llvm.org/D4407 by Byoungyoung Lee!
llvm-svn: 212770
Now CodeGenFunction is responsible for looking at sanitizer blacklist
(in CodeGenFunction::StartFunction) and turning off instrumentation,
if necessary.
No functionality change.
llvm-svn: 212501
Summary:
This change generalizes the code used to create global LLVM
variables referencing predefined strings (e.g. __FUNCTION__): now it
just calls GetAddrOfConstantStringFromLiteral method. As a result,
global variables for these predefined strings may get mangled names
and linkonce_odr linkage. Fix the test accordingly.
Test Plan: clang regression tests
Reviewers: majnemer
Reviewed By: majnemer
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4023
llvm-svn: 210284
This patch adds support for pointer types in global named registers variables.
It'll be lowered as a pair of read/write_register and inttoptr/ptrtoint calls.
Also adds some early checks on types on SemaDecl to avoid the assert.
Tests changed accordingly. (PR19837)
llvm-svn: 210274
That small change, although it looked harmless, it made emitting the LValue
on the PHI node without the proper cast. Reverting it fixes PR19841.
llvm-svn: 209663
Enables the emission of MS-compatible RTTI data structures for use with
typeid, dynamic_cast and exceptions. Does not implement dynamic_cast
or exceptions. As an artiface, typeid works in some cases but proper
support an testing will coming in a subsequent patch.
majnemer has fuzzed the results. Test cases included.
Differential Revision: http://reviews.llvm.org/D3833
llvm-svn: 209523
This patch implements global named registers in Clang, lowering to the just
created intrinsics in LLVM (@llvm.read/write_register). A new type of LValue
had to be created (Register), which just adds support to carry the metadata
node containing the name of the register. Two new methods to emit loads and
stores interoperate with another to emit the named metadata node.
No guarantees are being made and only non-allocatable global variable named
registers are being supported. Local named register support is unchanged.
llvm-svn: 209149
Also tidy up, simplify, and extend the test coverage to demonstrate the
limitations. This test should now fail if the bugs are fixed (&
hopefully whoever ends up in this situation sees the FIXMEs and realizes
that the test needs to be updated to positively test their change that
has fixed some or all of these issues).
I do wonder whether I could demonstrate breakage without a macro here,
but any way I slice it I can't think of a way to get two calls to the
same function on the same line/column in non-macro C++ - implicit
conversions happen at the same location as an explicit function, but
you'd never get an implicit conversion on the result of an explicit call
to the same implicit conversion operator (since the value is already
converted to the desired result)...
llvm-svn: 208468
It is very similar to GCC's __PRETTY_FUNCTION__, except it prints the
calling convention.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D3311
llvm-svn: 205780
The MS ABI requires that we determine the vbptr offset if have a
virtual inheritance model. Instead, raise an error pointing to the
diagnostic when this happens.
This fixes PR18583.
Differential Revision: http://llvm-reviews.chandlerc.com/D2842
llvm-svn: 201824
Previously, we made one traversal of the AST prior to codegen to assign
counters to the ASTs and then propagated the count values during codegen. This
patch now adds a separate AST traversal prior to codegen for the
-fprofile-instr-use option to propagate the count values. The counts are then
saved in a map from which they can be retrieved during codegen.
This new approach has several advantages:
1. It gets rid of a lot of extra PGO-related code that had previously been
added to codegen.
2. It fixes a serious bug. My original implementation (which was mailed to the
list but never committed) used 3 counters for every loop. Justin improved it to
move 2 of those counters into the less-frequently executed breaks and continues,
but that turned out to produce wrong count values in some cases. The solution
requires visiting a loop body before the condition so that the count for the
condition properly includes the break and continue counts. Changing codegen to
visit a loop body first would be a fairly invasive change, but with a separate
AST traversal, it is easy to control the order of traversal. I've added a
testcase (provided by Justin) to make sure this works correctly.
3. It improves the instrumentation overhead, reducing the number of counters for
a loop from 3 to 1. We no longer need dedicated counters for breaks and
continues, since we can just use the propagated count values when visiting
breaks and continues.
To make this work, I needed to make a change to the way we count case
statements, going back to my original approach of not including the fall-through
in the counter values. This was necessary because there isn't always an AST node
that can be used to record the fall-through count. Now case statements are
handled the same as default statements, with the fall-through paths branching
over the counter increments. While I was at it, I also went back to using this
approach for do-loops -- omitting the fall-through count into the loop body
simplifies some of the calculations and make them behave the same as other
loops. Whenever we start using this instrumentation for coverage, we'll need
to add the fall-through counts into the counter values.
llvm-svn: 201528
A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
adjustFallThroughCount isn't a good name, and the documentation was
even worse. This commit attempts to clarify what it's for and when to
use it.
llvm-svn: 199139
With the introduction of explicit address space casts into LLVM, there's
a need to provide a new cast kind the front-end can create for C/OpenCL/CUDA
and code to produce address space casts from those kinds when appropriate.
Patch by Michele Scandale!
llvm-svn: 197036
In OpenCL a vector of 3 elements, acts like a vector of four elements.
So for a vector of size 3 the '.hi' and '.odd' accessors, would access
the elements {2, 3} and {1, 3} respectively.
However, in EmitStoreThroughExtVectorComponentLValue we are still operating on
a vector of size 3, so we should only access {2} and {1}. We do this by checking
the last element to be accessed, and ignore it if it is out-of-bounds.
EmitLoadOfExtVectorElementLValue doesn't have a similar problem, because it does
a direct shufflevector with undef, so an out-of-bounds access just gives an undef
value.
Patch by Anastasia Stulova!
llvm-svn: 195367
Summary:
Similar to __FUNCTION__, MSVC exposes the name of the enclosing mangled
function name via __FUNCDNAME__. This implementation is very naive and
unoptimized, it is expected that __FUNCDNAME__ would be used rarely in
practice.
Reviewers: rnk, rsmith, thakis
CC: cfe-commits, silvas
Differential Revision: http://llvm-reviews.chandlerc.com/D2109
llvm-svn: 194181
deallocation function (and the corresponding unsized deallocation function has
been declared), emit a weak discardable definition of the function that
forwards to the corresponding unsized deallocation.
This allows a C++ standard library implementation to provide both a sized and
an unsized deallocation function, where the unsized one does not just call the
sized one, for instance by putting both in the same object file within an
archive.
llvm-svn: 194055
check using the ubsan runtime) and -fsanitize=local-bounds (for the middle-end
check which inserts traps).
Remove -fsanitize=local-bounds from -fsanitize=undefined. It does not produce
useful diagnostics and has false positives (PR17635), and is not a good
compromise position between UBSan's checks and ASan's checks.
Map -fbounds-checking to -fsanitize=local-bounds to restore Clang's historical
behavior for that flag.
llvm-svn: 193205
This uses function prefix data to store function type information at the
function pointer.
Differential Revision: http://llvm-reviews.chandlerc.com/D1338
llvm-svn: 193058
An updated version of r191586 with bug fix.
Struct-path aware TBAA generates tags to specify the access path,
while scalar TBAA only generates tags to scalar types.
We should not generate a TBAA tag with null being the first field. When
a TBAA type node is null, the tag should be null too. Make sure we
don't decorate an instruction with a null TBAA tag.
Added a testing case for the bug reported by Richard with -relaxed-aliasing
and -fsanitizer=thread.
llvm-svn: 192145
The code in CGExpr was added back in 2012 (r165536) but not exercised in tests
until recently.
Detected on the MemorySanitizer bootstrap bot.
llvm-svn: 190521
This reverts commit r189320.
Alexey Samsonov and Dmitry Vyukov presented some arguments for keeping
these around - though it still seems like those tasks could be solved by
a tool just using the symbol table. In a very small number of cases,
thunks may be inlined & debug info might be able to save profilers &
similar tools from misclassifying those cases as part of the caller.
The extra changes here plumb through the VarDecl for various cases to
CodeGenFunction - this provides better fidelity through a few APIs but
generally just causes the CGF::StartFunction to fallback to using the
name of the IR function as the name in the debug info.
The changes to debug-info-global-ctor-dtor.cpp seem like goodness. The
two names that go missing (in favor of only emitting those names as
linkage names) are names that can be demangled - emitting them only as
the linkage name should encourage tools to do just that.
Again, thanks to Dinesh Dwivedi for investigation/work on this issue.
llvm-svn: 189421
- __func__ or __FUNCTION__ returns captured statement's parent
function name, not the one compiler generated.
Differential Revision: http://llvm-reviews.chandlerc.com/D1491
Reviewed by bkramer
llvm-svn: 189219
1. We now print the return type of lambdas and return type deduced functions
as "auto". Trailing return types with decltype print the underlying type.
2. Use the lambda or block scope for the PredefinedExpr type instead of the
parent function. This fixes PR16946, a strange mismatch between type of the
expression and the actual result.
3. Verify the type in CodeGen.
4. The type for blocks is still wrong. They are numbered and the name is not
known until CodeGen.
llvm-svn: 188900
Summary:
We would crash in CodeGen::CodeGenModule::EmitUuidofInitializer
because our attempt to enter CodeGen::CodeGenModule::EmitConstantValue
will be foiled: the type of the constant value is incomplete.
Instead, create an unnamed type with the proper layout on all platforms.
Punt the problem of wrongly defined struct _GUID types to the user.
(It's impossible because the TU may never get to see the type and thus
we can't verify that it is suitable.)
This fixes PR16856.
Reviewers: rsmith, rnk, thakis
Reviewed By: rnk
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1375
llvm-svn: 188481
Summary:
UBSan was checking for alignment of the derived class on the pointer to
the base class, before converting. With some class hierarchies, this could
generate false positives.
Added test-case.
llvm-svn: 187948
Restore it after each argument is emitted. This fixes the scope info for
inlined subroutines inside of function argument expressions. (E.g.,
anything STL).
rdar://problem/12592135
llvm-svn: 187240
This is the same way GenericSelectionExpr works, and it's generally a
more consistent approach.
A large part of this patch is devoted to caching the value of the condition
of a ChooseExpr; it's needed to avoid threading an ASTContext into
IgnoreParens().
Fixes <rdar://problem/14438917>.
llvm-svn: 186738
Introduce CXXStdInitializerListExpr node, representing the implicit
construction of a std::initializer_list<T> object from its underlying array.
The AST representation of such an expression goes from an InitListExpr with a
flag set, to a CXXStdInitializerListExpr containing a MaterializeTemporaryExpr
containing an InitListExpr (possibly wrapped in a CXXBindTemporaryExpr).
This more detailed representation has several advantages, the most important of
which is that the new MaterializeTemporaryExpr allows us to directly model
lifetime extension of the underlying temporary array. Using that, this patch
*drastically* simplifies the IR generation of this construct, provides IR
generation support for nested global initializer_list objects, fixes several
bugs where the destructors for the underlying array would accidentally not get
invoked, and provides constant expression evaluation support for
std::initializer_list objects.
llvm-svn: 183872
were lacking ExprWithCleanups nodes in some cases where the new approach to
lifetime extension needed them).
Original commit message:
Rework IR emission for lifetime-extended temporaries. Instead of trying to walk
into the expression and dig out a single lifetime-extended entity and manually
pull its cleanup outside the expression, instead keep a list of the cleanups
which we'll need to emit when we get to the end of the full-expression. Also
emit those cleanups early, as EH-only cleanups, to cover the case that the
full-expression does not terminate normally. This allows IR generation to
properly model temporary lifetime when multiple temporaries are extended by the
same declaration.
We have a pre-existing bug where an exception thrown from a temporary's
destructor does not clean up lifetime-extended temporaries created in the same
expression and extended to automatic storage duration; that is not fixed by
this patch.
llvm-svn: 183859
into the expression and dig out a single lifetime-extended entity and manually
pull its cleanup outside the expression, instead keep a list of the cleanups
which we'll need to emit when we get to the end of the full-expression. Also
emit those cleanups early, as EH-only cleanups, to cover the case that the
full-expression does not terminate normally. This allows IR generation to
properly model temporary lifetime when multiple temporaries are extended by the
same declaration.
We have a pre-existing bug where an exception thrown from a temporary's
destructor does not clean up lifetime-extended temporaries created in the same
expression and extended to automatic storage duration; that is not fixed by
this patch.
llvm-svn: 183721
EmitCapturedStmt creates a captured struct containing all of the captured
variables, and then emits a call to the outlined function. This is similar in
principle to EmitBlockLiteral.
GenerateCapturedFunction actually produces the outlined function. It is based
on GenerateBlockFunction, but is much simpler. The function type is determined
by the parameters that are in the CapturedDecl.
Some changes have been added to this patch that were reviewed as part of the
serialization patch and moving the parameters to the captured decl.
Differential Revision: http://llvm-reviews.chandlerc.com/D640
llvm-svn: 181536
a lambda.
Bug #1 is that CGF's CurFuncDecl was "stuck" at lambda invocation
functions. Fix that by generally improving getNonClosureContext
to look through lambdas and captured statements but only report
code contexts, which is generally what's wanted. Audit uses of
CurFuncDecl and getNonClosureAncestor for correctness.
Bug #2 is that lambdas weren't specially mapping 'self' when inside
an ObjC method. Fix that by removing the requirement for that
and using the normal EmitDeclRefLValue path in LoadObjCSelf.
rdar://13800041
llvm-svn: 181000
Add a CXXDefaultInitExpr, analogous to CXXDefaultArgExpr, and use it both in
CXXCtorInitializers and in InitListExprs to represent a default initializer.
There's an additional complication here: because the default initializer can
refer to the initialized object via its 'this' pointer, we need to make sure
that 'this' points to the right thing within the evaluation.
llvm-svn: 179958
non-constant constructors or non-trivial destructors. Plus bugfixes for
thread_local references bound to temporaries (the temporaries themselves are
lifetime-extended to become thread_local), and the corresponding case for
std::initializer_list.
llvm-svn: 179496
For struct-path aware TBAA, we used to use scalar type node as the scalar tag,
which has an incompatible format with the struct path tag. We now use the same
format: base type, access type and offset.
We also uniformize the scalar type node and the struct type node: name, a list
of pairs (offset + pointer to MDNode). For scalar type, we have a single pair.
These are to make implementaiton of aliasing rules easier.
llvm-svn: 179335
For this source:
const int &ref = someStruct.bitfield;
We used to generate this AST:
DeclStmt [...]
`-VarDecl [...] ref 'const int &'
`-MaterializeTemporaryExpr [...] 'const int' lvalue
`-ImplicitCastExpr [...] 'const int' lvalue <NoOp>
`-MemberExpr [...] 'int' lvalue bitfield .bitfield [...]
`-DeclRefExpr [...] 'struct X' lvalue ParmVar [...] 'someStruct' 'struct X'
Notice the lvalue inside the MaterializeTemporaryExpr, which is very
confusing (and caused an assertion to fire in the analyzer - PR15694).
We now generate this:
DeclStmt [...]
`-VarDecl [...] ref 'const int &'
`-MaterializeTemporaryExpr [...] 'const int' lvalue
`-ImplicitCastExpr [...] 'int' <LValueToRValue>
`-MemberExpr [...] 'int' lvalue bitfield .bitfield [...]
`-DeclRefExpr [...] 'struct X' lvalue ParmVar [...] 'someStruct' 'struct X'
Which makes a lot more sense. This allows us to remove code in both
CodeGen and AST that hacked around this special case.
The commit also makes Clang accept this (legal) C++11 code:
int &&ref = std::move(someStruct).bitfield
PR15694 / <rdar://problem/13600396>
llvm-svn: 179250
Added TBAABaseType and TBAAOffset in LValue. These two fields are initialized to
the actual type and 0, and are updated in EmitLValueForField.
Path-aware TBAA tags are enabled for EmitLoadOfScalar and EmitStoreOfScalar.
Added command line option -struct-path-tbaa.
llvm-svn: 178797
the balance between expected behavior and compatibility with the gdb
testsuite.
(GDB gets confused if we break an expression into multiple debug
stmts so we enable this behavior only for inlined functions. For the
full experience people can still use -gcolumn-info.)
llvm-svn: 177164
aggregate types in a profoundly wrong way that has to be
worked around in every call site, to getEvaluationKind,
which classifies and distinguishes between all of these
cases.
Also, normalize the API for loading and storing complexes.
I'm working on a larger patch and wanted to pull these
changes out, but it would have be annoying to detangle
them from each other.
llvm-svn: 176656
calls and declarations.
LLVM has a default CC determined by the target triple. This is
not always the actual default CC for the ABI we've been asked to
target, and so we sometimes find ourselves annotating all user
functions with an explicit calling convention. Since these
calling conventions usually agree for the simple set of argument
types passed to most runtime functions, using the LLVM-default CC
in principle has no effect. However, the LLVM optimizer goes
into histrionics if it sees this kind of formal CC mismatch,
since it has no concept of CC compatibility. Therefore, if this
module happens to define the "runtime" function, or got LTO'ed
with such a definition, we can miscompile; so it's quite
important to get this right.
Defining runtime functions locally is quite common in embedded
applications.
llvm-svn: 176286
Several places were still treating the Attribute object as respresenting
multiple attributes. Those places now use the AttributeSet to represent
multiple attributes.
llvm-svn: 174004
implementation; this is much more inline with the original implementation
(i.e., pre-ubsan) and does not require run-time library support.
The trapping implementation can be invoked using either '-fcatch-undefined-behavior'
or '-fsanitize=undefined-trap -fsanitize-undefined-trap-on-error', with the latter
being preferred. Eventually, the -fcatch-undefined-behavior' flag will be removed.
llvm-svn: 173848
When we are visiting the extern declaration of 'i' in
static int i = 99;
int foo() {
extern int i;
return i;
}
We should not try to handle it as if it was an function static. That is, we
must consider the written storage class.
Fixing this then exposes that the assert in EmitGlobalVarDeclLValue and the
if leading to its call are not completely accurate. They were passing before
because the second decl was marked as having external storage. I changed them
to check the linkage, which I find easier to understand.
Last but not least, there is something strange going on with cuda and opencl.
My guess is that the linkage computation for these languages needs to be
audited, but I didn't want to change that in this patch so I just updated
the storage classes to keep the current behavior.
Thanks to Reed Kotler for reporting this.
llvm-svn: 170827
We were emitting calls to blocks as if all arguments were
required --- i.e. with signature (A,B,C,D,...) rather than
(A,B,...). This patch fixes that and accounts for the
implicit block-context argument as a required argument.
In addition, this patch changes the function type under which
we call unprototyped functions on platforms like x86-64 that
guarantee compatibility of variadic functions with unprototyped
function types; previously we would always call such functions
under the LLVM type T (...)*, but now we will call them under
the type T (A,B,C,D,...)*. This last change should have no
material effect except for making the type conventions more
explicit; it was a side-effect of the most convenient implementation.
llvm-svn: 169588
generally support the C++11 memory model requirements for bitfield
accesses by relying more heavily on LLVM's memory model.
The primary change this introduces is to move from a manually aligned
and strided access pattern across the bits of the bitfield to a much
simpler lump access of all bits in the bitfield followed by math to
extract the bits relevant for the particular field.
This simplifies the code significantly, but relies on LLVM to
intelligently lowering these integers.
I have tested LLVM's lowering both synthetically and in benchmarks. The
lowering appears to be functional, and there are no really significant
performance regressions. Different code patterns accessing bitfields
will vary in how this impacts them. The only real regressions I'm seeing
are a few patterns where the LLVM code generation for loads that feed
directly into a mask operation don't take advantage of the x86 ability
to do a smaller load and a cheap zero-extension. This doesn't regress
any benchmark in the nightly test suite on my box past the noise
threshold, but my box is quite noisy. I'll be watching the LNT numbers,
and will look into further improvements to the LLVM lowering as needed.
llvm-svn: 169489
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
objc_loadWeak. This retains and autorelease the weakly-refereced
object. This hidden autorelease sometimes makes __weak variable alive even
after the weak reference is erased, because the object is still referenced
by an autorelease pool. This patch overcomes this behavior by loading a
weak object via call to objc_loadWeakRetained(), followng it by objc_release
at appropriate place, thereby removing the hidden autorelease. // rdar://10849570
llvm-svn: 168740
checks to enable. Remove frontend support for -fcatch-undefined-behavior,
-faddress-sanitizer and -fthread-sanitizer now that they don't do anything.
llvm-svn: 167413
We want the diagnostic, and if the load is optimized away, we still want to
trap it. Stop checking non-default address spaces; that doesn't work in
general.
llvm-svn: 167219
initialized by a reference constant expression.
Our odr-use modeling still needs work here: we don't yet implement the 'set of
potential results of an expression' DR.
llvm-svn: 166361
Convert the uses of the Attributes class over to the new format. The
Attributes::get method call now takes an LLVM context so that the attributes
object can be uniquified and stored.
llvm-svn: 165918
the trap BB out of the individual checks and into a common function, to prepare
for making this code call into a runtime library. Rename the existing EmitCheck
to EmitTypeCheck to clarify it and to move it out of the way of the new
EmitCheck.
llvm-svn: 163451
(__builtin_* etc.) so that it isn't possible to take their address.
Specifically, introduce a new type to represent a reference to a builtin
function, and a new cast kind to convert it to a function pointer in the
operand of a call. Fixes PR13195.
llvm-svn: 162962
* when checking that a pointer or reference refers to appropriate storage for a type, also check the alignment and perform a null check
* check that references are bound to appropriate storage
* check that 'this' has appropriate storage in member accesses and member function calls
llvm-svn: 162523
in the ABI arrangement, and leave a hook behind so that we can easily
tweak CCs on platforms that use different CCs by default for C++
instance methods.
llvm-svn: 159894
if we want to ignore a result, the Dest will be null. Otherwise,
we must copy into it. This means we need to ensure a slot when
loading from a volatile l-value.
With all that in place, fix a bug with chained assignments into
__block variables of aggregate type where we were losing insight into
the actual source of the value during the second assignment.
llvm-svn: 159630
Heavily based on a patch from
Aaron Wishnick <aaron.s.wishnick@gmail.com>.
I'll clean up the duplicated function in CodeGen as
a follow-up, later today or tomorrow.
llvm-svn: 159060
When enabled, clang generates bounds checks for array and pointers dereferences. Work to follow in LLVM's backend.
OK'ed by Chad; thanks for the review.
llvm-svn: 156431
remove the comparison of objectsize with -1. since it's an unsigned comparison, it will always succeed if objectsize returns -1, which is enough to have the check removed
llvm-svn: 156311
and only consider using __cxa_atexit in the Itanium logic. The
default logic is to use atexit().
Emit "guarded" initializers in Microsoft mode unconditionally.
This is definitely not correct, but it's closer to correct than
just not emitting the initializer.
Based on a patch by Timur Iskhodzhanov!
llvm-svn: 155894
thinking of generalizing it to be able to specify other freedoms beyond accuracy
(such as that NaN's don't have to be respected). I'd like the 3.1 release (the
first one with this metadata) to have the more generic name already rather than
having to auto-upgrade it in 3.2.
llvm-svn: 154745
__atomic_test_and_set, __atomic_clear, plus a pile of undocumented __GCC_*
predefined macros.
Implement library fallback for __atomic_is_lock_free and
__c11_atomic_is_lock_free, and implement __atomic_always_lock_free.
Contrary to their documentation, GCC's __atomic_fetch_add family don't
multiply the operand by sizeof(T) when operating on a pointer type.
libstdc++ relies on this quirk. Remove this handling for all but the
__c11_atomic_fetch_add and __c11_atomic_fetch_sub builtins.
Contrary to their documentation, __atomic_test_and_set and __atomic_clear
take a first argument of type 'volatile void *', not 'void *' or 'bool *',
and __atomic_is_lock_free and __atomic_always_lock_free have an argument
of type 'const volatile void *', not 'void *'.
With this change, libstdc++4.7's <atomic> passes libc++'s atomic test suite,
except for a couple of libstdc++ bugs and some cases where libc++'s test
suite tests for properties which implementations have latitude to vary.
llvm-svn: 154640
in general (such an atomic has boolean representation) and
specifically for IR generation of __c11_atomic_init. The latter also
means actually using initialization semantics for this initialization,
rather than just creating a store.
On a related note, make sure we actually put in non-atomic-to-atomic
conversions when performing an implicit conversion sequence. IR
generation is far too kind here, but we still want the ASTs to make
sense.
llvm-svn: 154612
This is not quite sufficient for libstdc++'s <atomic>: we still need
__atomic_test_and_set and __atomic_clear, and may need a more complete
__atomic_is_lock_free implementation.
We are also missing an implementation of __atomic_always_lock_free,
__atomic_nand_fetch, and __atomic_fetch_nand, but those aren't needed
for libstdc++.
llvm-svn: 154579
LLVM intrinsics for.
I have an implementation of these functions, which wants to go in a libgcc_s
equivalent in compiler-rt. It's currently here:
http://people.freebsd.org/~theraven/atomic.c
It will be committed to compiler-rt as soon as I work out where would be a
sensible place to put it...
llvm-svn: 153666
flag as GCC uses: -fstrict-enums). There is a *lot* of code making
unwarranted assumptions about the underlying type of enums, and it
doesn't seem entirely reasonable to eagerly break all of it.
Much more importantly, the current state of affairs is *very* good at
optimizing based upon this information, which causes failures that are
very distant from the actual enum. Before we push for enabling this by
default, I think we need to implement -fcatch-undefined-behavior support
for instrumenting and trapping whenever we store or load a value outside
of the range. That way we can track down the misbehaving code very
quickly.
I discussed this with Rafael, and currently the only important cases he
is aware of are the bool range-based optimizations which are staying
hard enabled. We've not seen any issue with those either, and they are
much more important for performance.
llvm-svn: 153550
For i686 targets (eg. cygwin), I saw "Range must not be empty!" in verifier.
It produces (i32)[0x80000000:0x80000000) from (uint64_t)[0xFFFFFFFF80000000ULL:0x0000000080000000ULL), for signed i32 on MDNode::Range.
llvm-svn: 153382
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491
we correctly emit loads of BlockDeclRefExprs even when they
don't qualify as ODR-uses. I think I'm adequately convinced
that BlockDeclRefExpr can die.
llvm-svn: 152479
analysis to make the AST representation testable. They are represented by a
new UserDefinedLiteral AST node, which is a sugared CallExpr. All semantic
properties, including full CodeGen support, are achieved for free by this
representation.
UserDefinedLiterals can never be dependent, so no custom instantiation
behavior is required. They are mangled as if they were direct calls to the
underlying literal operator. This matches g++'s apparent behavior (but not its
actual mangling, which is broken for literal-operator-ids).
User-defined *string* literals are now fully-operational, but the semantic
analysis is quite hacky and needs more work. No other forms of user-defined
literal are created yet, but the AST support for them is present.
This patch committed after midnight because we had already hit the quota for
new kinds of literal yesterday.
llvm-svn: 152211
block pointer that returns a block literal which captures (by copy)
the lambda closure itself. Some aspects of the block literal are left
unspecified, namely the capture variable (which doesn't actually
exist) and the body (which will be filled in by IRgen because it can't
be written as an AST).
Because we're switching to this model, this patch also eliminates
tracking the copy-initialization expression for the block capture of
the conversion function, since that information is now embedded in the
synthesized block literal. -1 side tables FTW.
llvm-svn: 151131
optional argument passed through the variadic ellipsis)
potentially affects how we need to lower it. Propagate
this information down to the various getFunctionInfo(...)
overloads on CodeGenTypes. Furthermore, rename those
overloads to clarify their distinct purposes, and make
sure we're calling the right one in the right place.
This has a nice side-effect of making it easier to construct
a function type, since the 'variadic' bit is no longer
separable.
This shouldn't really change anything for our existing
platforms, with one minor exception --- we should now call
variadic ObjC methods with the ... in the "right place"
(see the test case), which I guess matters for anyone
running GNUStep on MIPS. Mostly it's just a substantial
clean-up.
llvm-svn: 150788
is general goodness because representations of member pointers are
not always equivalent across member pointer types on all ABIs
(even though this isn't really standard-endorsed).
Take advantage of the new information to teach IR-generation how
to do these reinterprets in constant initializers. Make sure this
works when intermingled with hierarchy conversions (although
this is not part of our motivating use case). Doing this in the
constant-evaluator would probably have been better, but that would
require a *lot* of extra structure in the representation of
constant member pointers: you'd really have to track an arbitrary
chain of hierarchy conversions and reinterpretations in order to
get this right. Ultimately, this seems less complex. I also
wasn't quite sure how to extend the constant evaluator to handle
foldings that we don't actually want to treat as extended
constant expressions.
llvm-svn: 150551
"use the new ConstantVector::getSplat method where it makes sense."
Also simplify a bunch of code to use the Builder->getInt32 instead
of doing it the hard and ugly way. Much more progress could be made
here, but I don't plan to do it.
llvm-svn: 148926
- Add atomic-to/from-nonatomic cast types
- Emit atomic operations for arithmetic on atomic types
- Emit non-atomic stores for initialisation of atomic types, but atomic stores and loads for every other store / load
- Add a __atomic_init() intrinsic which does a non-atomic store to an _Atomic() type. This is needed for the corresponding C11 stdatomic.h function.
- Enables the relevant __has_feature() checks. The feature isn't 100% complete yet, but it's done enough that we want people testing it.
Still to do:
- Make the arithmetic operations on atomic types (e.g. Atomic(int) foo = 1; foo++;) use the correct LLVM intrinsic if one exists, not a loop with a cmpxchg.
- Add a signal fence builtin
- Properly set the fenv state in atomic operations on floating point values
- Correctly handle things like _Atomic(_Complex double) which are too large for an atomic cmpxchg on some platforms (this requires working out what 'correctly' means in this context)
- Fix the many remaining corner cases
llvm-svn: 148242
generic pushDestroy function.
This would reduce the number of useful declarations in
CGTemporaries.cpp to one. Since CodeGenFunction::EmitCXXTemporary
does not deserve its own file, move it to CGCleanup.cpp and delete
CGTemporaries.cpp.
llvm-svn: 145202
This supports single-element initializer lists for references according to DR1288, as well as creating temporaries and binding to them for other initializer lists.
llvm-svn: 145186
full-expression. Naturally they're inactive before we enter
the block literal expression. This restores the intended
behavior that blocks belong to their enclosing scope.
There's a useful -O0 / compile-time optimization that we're
missing here with activating cleanups following straight-line
code from their inactive beginnings.
llvm-svn: 144268
property references to use a new PseudoObjectExpr
expression which pairs a syntactic form of the expression
with a set of semantic expressions implementing it.
This should significantly reduce the complexity required
elsewhere in the compiler to deal with these kinds of
expressions (e.g. IR generation's special l-value kind,
the static analyzer's Message abstraction), at the lower
cost of specifically dealing with the odd AST structure
of these expressions. It should also greatly simplify
efforts to implement similar language features in the
future, most notably Managed C++'s properties and indexed
properties.
Most of the effort here is in dealing with the various
clients of the AST. I've gone ahead and simplified the
ObjC rewriter's use of properties; other clients, like
IR-gen and the static analyzer, have all the old
complexity *and* all the new complexity, at least
temporarily. Many thanks to Ted for writing and advising
on the necessary changes to the static analyzer.
I've xfailed a small diagnostics regression in the static
analyzer at Ted's request.
llvm-svn: 143867
The OpenCL single precision division operation is only required to
be accurate to 2.5ulp. Annotate the fdiv instruction with metadata
which signals to the backend that an imprecise divide instruction
may be used.
llvm-svn: 143136
Start handling debug line and scope information better:
Migrate most of the location setting within the larger API in CGDebugInfo and
update a lot of callers.
Remove the existing file/scope change machinery in UpdateLineDirectiveRegion
and replace it with DILexicalBlockFile usage.
Finishes off the rest of rdar://10246360
after fixing a few bugs that were exposed in gdb testsuite testing.
llvm-svn: 141893
Migrate most of the location setting within the larger API in CGDebugInfo and
update a lot of callers.
Remove the existing file/scope change machinery in UpdateLineDirectiveRegion
and replace it with DILexicalBlockFile usage.
Finishes off the rest of rdar://10246360
llvm-svn: 141732
if the definition has a non-variadic prototype with compatible
parameters. Therefore, the default rule for such calls must be to
use a non-variadic convention. Achieve this by casting the callee to
the function type with which it is required to be compatible, unless
the target specifically opts out and insists that unprototyped calls
should use the variadic rules. The only case of that I'm aware of is
the x86-64 convention, which passes arguments the same way in both
cases but also sets a small amount of extra information; here we seek
to maintain compatibility with GCC, which does set this when calling
an unprototyped function.
Addresses PR10810 and PR10713.
llvm-svn: 140241
language options. Use that .def file to declare the LangOptions class
and initialize all of its members, eliminating a source of annoying
initialization bugs.
AST serialization changes are next up.
llvm-svn: 139605
the lifetime of the block by copying it to the heap, or else we'll get
a dangling reference because the code working with the non-block-typed
object will not know it needs to copy.
There is some danger here, e.g. with assigning a block literal to an
unsafe variable, but, well, it's an unsafe variable.
llvm-svn: 139451
than conversions of C pointers to ObjC pointers. In order to ensure that
we've caught every case, add asserts to CastExpr that strictly determine
which cast kind is used for which kind of bit cast.
llvm-svn: 139352
to look through SubstNonTypeTemplateParmExprs. Then, update the IR
generation of CallExprs to actually use CallExpr::getCalleeDecl()
rather than attempting to mimick its behavior (badly).
Fixes <rdar://problem/10063539>.
llvm-svn: 139185
emit call results into potentially aliased slots. This allows us
to properly mark indirect return slots as noalias, at the cost
of requiring an extra memcpy when assigning an aggregate call
result into a l-value. It also brings us into compliance with
the x86-64 ABI.
llvm-svn: 138599
to represent a fully-substituted non-type template parameter.
This should improve source fidelity, as well as being generically
useful for diagnostics and such.
llvm-svn: 135243
builds introduced in r134972:
lib/CodeGen/CGExpr.cpp:1294:7: error: no matching function for call to 'EmitBitCastOfLValueToProperType'
lib/CodeGen/CGExpr.cpp:1278:1: note: candidate function not viable: no known conversion from 'CGBuilderTy' (aka 'IRBuilder<false>') to 'llvm::IRBuilder<> &' for 1st argument
This fixes the issue by passing CodeGenFunction on down, and using its
builder directly rather than passing just the builder down.
This may not be the best / cleanest fix, Chris please review. It at
least fixes builds.
llvm-svn: 134977
uncompleted struct types. We now do what llvm-gcc does and compile
them into [i8 x 0]. If the type is later completed, we make sure that
it is appropriately cast.
We compile the terrible example to something like this now:
%struct.A = type { i32, i32, i32 }
@g = external global [0 x i8]
define void @_Z1fv() nounwind {
entry:
call void @_Z3fooP1A(%struct.A* bitcast ([0 x i8]* @g to %struct.A*))
ret void
}
declare void @_Z3fooP1A(%struct.A*)
define %struct.A* @_Z2f2v() nounwind {
entry:
ret %struct.A* getelementptr inbounds ([0 x %struct.A]* bitcast ([0 x i8]* @g to [0 x %struct.A]*), i32 0, i64 1)
}
llvm-svn: 134972
where we have an immediate need of a retained value.
As an exception, don't do this when the call is made as the immediate
operand of a __bridge retain. This is more in the way of a workaround
than an actual guarantee, so it's acceptable to be brittle here.
rdar://problem/9504800
llvm-svn: 134605
arithmetic on a VLA as 'nsw', per discussion with djg, and
implement pointer arithmetic (other than array accesses) and
pointer subtraction for VLA types.
llvm-svn: 133855
retain/release the temporary object appropriately. Previously, we
would only perform the retain/release operations when the reference
would extend the lifetime of the temporary, but this does the wrong
thing across calls.
llvm-svn: 133620
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
Type::isUnsignedIntegerOrEnumerationType(), which are like
Type::isSignedIntegerType() and Type::isUnsignedIntegerType() but also
consider the underlying type of a C++0x scoped enumeration type.
Audited all callers to the existing functions, switching those that
need to also handle scoped enumeration types (e.g., those that deal
with constant values) over to the new functions. Fixes PR9923 /
<rdar://problem/9447851>.
llvm-svn: 131735
for __unknown_anytype resolution to destructively modify the AST. So that's
what it does now, which significantly simplifies some of the implementation.
Normal member calls work pretty cleanly now, and I added support for
propagating unknown-ness through &.
llvm-svn: 129331
represents a dynamic cast where we know that the result is always null.
For example:
struct A {
virtual ~A();
};
struct B final : A { };
struct C { };
bool f(B* b) {
return dynamic_cast<C*>(b);
}
llvm-svn: 129256
The idea is that you can create a VarDecl with an unknown type, or a
FunctionDecl with an unknown return type, and it will still be valid to
access that object as long as you explicitly cast it at every use. I'm
still going back and forth about how I want to test this effectively, but
I wanted to go ahead and provide a skeletal implementation for the LLDB
folks' benefit and because it also improves some diagnostic goodness for
placeholder expressions.
llvm-svn: 129065
the array alignment to the array access.
- This is more or less the best we can do without having alignment present in
the type system, but is a long way from truly matching how GCC handles this.
llvm-svn: 128691
add support for the OpenCL __private, __local, __constant and
__global address spaces, as well as the __read_only, _read_write and
__write_only image access specifiers. Patch originally by ARM;
language-specific address space support by myself.
llvm-svn: 127915
21 int main() {
22 A a;
For example, here user would expect to stop at line 22, even if A's constructor leads to a call through CXXDefaultArgExpr.
This fixes ostream-defined.exp regression from gdb testsuite.
llvm-svn: 127164
= bar() + ... + bar() + ...
clang keeps track of column numbers, so we could put location entries for all subexpressions but that will significantly bloat debug info in general, but a location for call expression is helpful here.
llvm-svn: 127018
class and to bind the shared value using OpaqueValueExpr. This fixes an
unnoticed problem with deserialization of these expressions where the
deserialized form would lose the vital pointer-equality trait; or rather,
it fixes it because this patch also does the right thing for deserializing
OVEs.
Change OVEs to not be a "temporary object" in the sense that copy elision is
permitted.
This new representation is not totally unawkward to work with, but I think
that's really part and parcel with the semantics we're modelling here. In
particular, it's much easier to fix things like the copy elision bug and to
make the CFG look right.
I've tried to update the analyzer to deal with this in at least some
obvious cases, and I think we get a much better CFG out, but the printing
of OpaqueValueExprs probably needs some work.
llvm-svn: 125744
- Have CGM precompute a number of commonly-used types
- Have CGF copy that during initialization instead of recomputing them
- Use TBAA info when initializing a parameter variable
- Refactor the scalar ++/-- code
llvm-svn: 125562
- BlockDeclRefExprs always store VarDecls
- BDREs no longer store copy expressions
- BlockDecls now store a list of captured variables, information about
how they're captured, and a copy expression if necessary
With that in hand, change IR generation to use the captures data in
blocks instead of walking the block independently.
Additionally, optimize block layout by emitting fields in descending
alignment order, with a heuristic for filling in words when alignment
of the end of the block header is insufficient for the most aligned
field.
llvm-svn: 125005
right for anonymous struct/union members led to me discovering some
seemingly broken code in that area of Sema, which I fixed, partly by
changing the representation of member pointer constants so that
IndirectFieldDecls aren't expanded. This led to assorted cleanups with
member pointers in CodeGen, and while I was doing that I saw some random
other things to clean up.
llvm-svn: 124785
non-class prvalues actually require the realization of a
temporary. For everything else, we already have an lvalue (or class
prvalue) in the subexpression.
Note: we're missing some move elision in this case. I'll tackle that next.
llvm-svn: 124453
I'm separately committing this because it incidentally changes some
block orderings and minor IR issues, like using a phi instead of
an unnecessary alloca.
llvm-svn: 124277
the LHS, or else the pointer might be invalid. This is kindof dumb, but
go ahead and make sure we're doing that for l-value scalar assignment,
which fixes a miscompile of obj-c++.dg/block-seq.mm.
Leave a FIXME for how to solve this problem for agg __blocks.
llvm-svn: 120992
Fix a bug in the emission of complex compound assignment l-values.
Introduce a method to emit an expression whose value isn't relevant.
Make that method evaluate its operand as an l-value if it is one.
Fixes our volatile compliance in C++.
llvm-svn: 120931
struct X {
X() : au_i1(123) {}
union {
int au_i1;
float au_f1;
};
};
clang will now deal with au_i1 explicitly as an IndirectFieldDecl.
llvm-svn: 120900
not actually frequently used, because ImpCastExprToType only creates a node
if the types differ. So explicitly create an ICE in the lvalue-to-rvalue
conversion code in DefaultFunctionArrayLvalueConversion() as well as several
other new places, and consistently deal with the consequences throughout the
compiler.
In addition, introduce a new cast kind for loading an ObjCProperty l-value,
and make sure we emit those nodes whenever an ObjCProperty l-value appears
that's not on the LHS of an assignment operator.
This breaks a couple of rewriter tests, which I've x-failed until future
development occurs on the rewriter.
Ted Kremenek kindly contributed the analyzer workarounds in this patch.
llvm-svn: 120890
Also, move the l-value emission code into CGObjC.cpp and teach it, for
completeness, to store away self for a super send.
Also, inline the super cases for property gets and sets and make them
use the correct result type for implicit getter/setter calls.
llvm-svn: 120887
assignment to volatiles in C. This in effect reverts some of mjs's
work in and around r72572. Basically, the C++ standard is quite
clear, except that it lies about volatile behavior approximating
C's, whereas the C standard is almost actively misleading.
llvm-svn: 119344
implicit conversions; the last batch was specific to promotions.
I think this is the full set we need. I do think dividing the cast
kinds into floating and integral is probably a good idea.
Annotate a *lot* more C casts with useful cast kinds.
llvm-svn: 119036
slot. The easiest way to do that was to bundle up the information
we care about for aggregate slots into a new structure which demands
that its creators at least consider the question.
I could probably be convinced that the ObjC 'needs GC' bit should
be rolled into this structure.
Implement generalized copy elision. The main obstacle here is that
IR-generation must be much more careful about making sure that exactly
llvm-svn: 113962
block-literal initializer expression causes IRgen to crash.
This patch fixes by saving it in StaticLocalDecl map
already used for such purposes. (radar 8390455).
llvm-svn: 113307
That revision started classifying truly empty structs like "Y" and "X"
as being NoClass/NoClass and turning them into 'ignore'. The call code
turns around and allocates space for the ignored argument with
GetUndefRValue. The bug is that GetUndefRValue would return the address
as undef, instead of returning an object with a defined address but
undefined contents.
llvm-svn: 111794
class; they should just be completely opaque throughout IR gen now,
although I haven't really audited that.
Fix a bug apparently inherited from gcc-4.2 where we failed to null-check
member data pointers when performing derived-to-base or base-to-derived
conversions on them.
llvm-svn: 111789
pointers. I find the resulting code to be substantially cleaner, and it
makes it very easy to use the same APIs for data member pointers (which I have
conscientiously avoided here), and it avoids a plethora of potential
inefficiencies due to excessive memory copying, but we'll have to see if it
actually works.
llvm-svn: 111776
the ABI code. Implement correct semantics for these on ARM.
I believe this completes the implementation of member function pointers
on ARM.
I think I'm going to switch member function pointers over to be
non-aggregates while I have all this in mind.
llvm-svn: 111774
update callers as best I can.
- This is a work in progress, our alignment handling is very horrible / sketchy -- I am just aiming for monotonic improvement.
- Serious review appreciated.
llvm-svn: 111707
an lvalue of another, compatible Objective-C object type (e.g., a
subclass). Introduce a new initialization sequence step kind to
describe this binding, along with a new cast kind. Fixes PR7741.
llvm-svn: 110513
This takes some trickery since CastExpr has subclasses (and indeed,
is abstract).
Also, smoosh the CastKind into the bitfield from Expr.
Drops two words of storage from Expr in the common case of expressions
which don't need inheritance paths. Avoids a separate allocation and
another word of overhead in cases needing inheritance paths. Also has
the advantage of not leaking memory, since destructors for AST nodes are
never run.
llvm-svn: 110507
causing clang to compile this code into something that correctly throws a
length error, fixing a potential integer overflow security attack:
void *test(long N) {
return new int[N];
}
int main() {
test(1L << 62);
}
We do this even when exceptions are disabled, because it is better for the
code to abort than for the attack to succeed.
This is heavily based on a patch that Fariborz wrote.
llvm-svn: 108915
that involve binding a reference to a pure rvalue temporary (e.g., not
a class temporary), by creating a new temporary and copying the result
there. Fixes PR6024.
llvm-svn: 108431
reinterpret_casts (possibly indirectly via C-style/functional casts)
on values, e.g.,
int i;
reinterpret_cast<short&>(i);
The IR generated for this is essentially the same as for
*reinterpret_cast<short*>(&i).
Fixes PR6437, PR7593, and PR7344.
llvm-svn: 108294
self-host. Hopefully these results hold up on different platforms.
I tried to keep the GNU ObjC runtime happy, but it's hard for me to test.
Reimplement how clang generates IR for exceptions. Instead of creating new
invoke destinations which sequentially chain to the previous destination,
push a more semantic representation of *why* we need the cleanup/catch/filter
behavior, then collect that information into a single landing pad upon request.
Also reorganizes how normal cleanups (i.e. cleanups triggered by non-exceptional
control flow) are generated, since it's actually fairly closely tied in with
the former. Remove the need to track which cleanup scope a block is associated
with.
Document a lot of previously poorly-understood (by me, at least) behavior.
The new framework implements the Horrible Hack (tm), which requires every
landing pad to have a catch-all so that inlining will work. Clang no longer
requires the Horrible Hack just to make exceptions flow correctly within
a function, however. The HH is an unfortunate requirement of LLVM's EH IR.
llvm-svn: 107631
alloca for an argument. Make sure the argument gets the proper
decl alignment, which may be different than the type alignment.
This fixes PR7567
llvm-svn: 107627
have CGF create and make accessible standard int32,int64 and
intptr types. This fixes a ton of 80 column violations
introduced by LLVMContextification and cleans up stuff a lot.
llvm-svn: 106977