While dereferencing ThisTokEnd is fine and we know that it's not in
[a-zA-Z0-9_.], ThisTokEnd[1] is really past the end.
Found by asan and with a little help from clang-fuzz.
llvm-svn: 233491
Simplify boolean expressions using `true` and `false` with `clang-tidy`
Patch by Richard Thomson.
Differential Revision: http://reviews.llvm.org/D8531
llvm-svn: 232999
Changes diagnostic options, language standard options, diagnostic identifiers, diagnostic wording to use c++14 instead of c++1y. It also modifies related test cases to use the updated diagnostic wording.
llvm-svn: 215982
Something went wrong with r211426, it is an older version of this code
and should not have been committed. It was reverted with r211434.
Original commit message:
We didn't properly implement support for the sized integer suffixes.
Suffixes like i16 were essentially ignored instead of mapping them to
the appropriately sized integer type.
This fixes PR20008.
Differential Revision: http://reviews.llvm.org/D4132
llvm-svn: 211441
This reverts commit r211426.
This broke the arm bots. The crash can be reproduced on X86 by running.
./bin/clang -cc1 -fsyntax-only -verify -fms-extensions ~/llvm/clang/test/Lexer/ms-extensions.c -triple arm-linux
llvm-svn: 211434
We didn't properly implement support for the sized integer suffixes.
Suffixes like i16 were essentially ignored instead of mapping them to
the appropriately sized integer type.
This fixes PR20008.
Differential Revision: http://reviews.llvm.org/D4132
llvm-svn: 211426
Summary:
The limits on the number of fix-it hints and ranges attached to a
diagnostic are arbitrary and don't apply universally to all users of the
DiagnosticsEngine. The way the limits are enforced may lead to diagnostics
generating invalid sets of fixes. I suggest removing the limits, which will also
simplify the implementation.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: klimek, cfe-commits
Differential Revision: http://reviews.llvm.org/D3879
llvm-svn: 209468
digits. Turns out we have completely separate lexing codepaths for floating
point numbers depending on whether or not they start with a zero. Who knew...
=)
llvm-svn: 206932
literal operators. Also, for now, allow the proposed C++1y "il", "i", and "if"
suffixes too. (Will revert the latter if LWG decides not to go ahead with that
change after all.)
llvm-svn: 191274
Switch some warnings over to errors which should never have been warnings
in the first place. (Also, a minor fix to the preprocessor rules for
integer literals while I'm here.)
llvm-svn: 186903
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
This makes the behavior clearer concerning literals with the maximum
number of digits. For a 32-bit example, 4,000,000,000 is a valid uint32_t,
but 5,000,000,000 is not, so we'd have to count 10-digit decimal numbers
as "unsafe" (meaning we have to check for overflow when parsing them,
just as we would for numbers with 11 digits or higher). This is the same,
only with 64 bits to play with.
No functionality change.
llvm-svn: 164639
basic source character set in C++98. Add -Wc++98-compat diagnostics for same in
literals in C++11. Extend such support to cover string literals as well as
character literals, and mark N2170 as done.
This seems too minor to warrant a release note to me. Let me know if you disagree.
llvm-svn: 152444
first codepoint! Also, don't reject empty raw string literals for spurious
"encoding" issues. Also, don't rely on undefined behavior in ConvertUTF.c.
llvm-svn: 152344
Updates ProcessUCNExcape() for C++. C++11 allows UCNs in character
and string literals that represent control characters and basic
source characters. Also C++03 allows UCNs that refer to surrogate
codepoints.
UTF-8 sequences in character literals are now handled as single
c-chars.
Added error for multiple characters in Unicode character literals.
Added errors for when a the execution charset encoding of a c-char
cannot be represented as a single code unit in the associated
character type. Note that for the purposes of this error the asso-
ciated character type for a narrow character literal is char, not
int, even though in C narrow character literals have type int.
llvm-svn: 148389
buffer as an 'unsigned char', so that integer promotion doesn't
sign-extend character values > 127 into oblivion. Fixes
<rdar://problem/10188919>.
llvm-svn: 140608
collision between C99 hexfloats and C++0x user-defined literals by
giving C99 hexfloats precedence. Also, warning about user-defined
literals that conflict with hexfloats and those that have names that
are reserved by the implementation. Fixes <rdar://problem/9940194>.
llvm-svn: 138839
1. We would assume that the length of the string literal token was at least 2
2. We would allocate a buffer with size length-2
And when the stars aligned (one of which would be an invalid source location due to stale PCH)
The length would be 0 and we would try to allocate a 4GB buffer.
Add checks for this corner case and a bunch of asserts.
(We really really should have had an assert for 1.).
Note that there's no test case since I couldn't get one (it was major PITA to reproduce),
maybe later.
llvm-svn: 131492
The extra data stored on user-defined literal Tokens is stored in extra
allocated memory, which is managed by the PreprocessorLexer because there isn't
a better place to put it that makes sure it gets deallocated, but only after
it's used up. My testing has shown no significant slowdown as a result, but
independent testing would be appreciated.
llvm-svn: 112458