This patch implements the semantics for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define vector-length-specific (VLS)
versions of existing vector-length-agnostic (VLA) types.
The semantics were already implemented by D83551, although the
implementation approach has since changed to represent VLSTs as
VectorType in the AST and fixed-length vectors in the IR everywhere
except in function args/returns. This is described in the prototype
patch D85128 demonstrating the new approach.
The semantic changes added in D83551 are changed since the
AttributedType is replaced by VectorType in the AST. Minimal changes
were necessary in the previous patch as the canonical type for both VLA
and VLS was the same (i.e. sizeless), except in constructs such as
globals and structs where sizeless types are unsupported. This patch
reverts the changes that permitted VLS types that were represented as
sizeless types in such circumstances, and adds support for implicit
casting between VLA <-> VLS types as described in section 3.7.3.2 of the
ACLE.
Since the SVE builtin types for bool and uint8 are both represented as
BuiltinType::UChar in VLSTs, two new vector kinds are implemented to
distinguish predicate and data vectors.
[1] https://developer.arm.com/documentation/100987/latest
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D85736
for array bounds, not "integer constant" rules.
For an array bound of class type, this causes us to perform an implicit
conversion to size_t, instead of looking for a unique conversion to
integral or unscoped enumeration type. This affects which cases are
valid when a class has multiple implicit conversion functions to
different types.
This change allow a CallExpr to have optional FPOptionsOverride object,
stored in trailing storage. The implementaion is made similar to the way
used in BinaryOperator.
Differential Revision: https://reviews.llvm.org/D84343
Reapply 49e5f603d4
which had been reverted in c94332919b.
Originally reverted because I hadn't updated it in quite a while when I
got around to committing it, so there were a bunch of missing changes to
new code since I'd written the patch.
Reviewers: aaron.ballman
Differential Revision: https://reviews.llvm.org/D76646
Summary:
We need to detect when certain TypoExprs are not being transformed
due to invalid trees, otherwise we risk endlessly trying to fix it.
Reviewers: rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D84067
There is a version that just tests (also called
isIntegerConstantExpression) & whereas this version is specifically used
when the value is of interest (a few call sites were actually refactored
to calling the test-only version) so let's make the API look more like
it.
Reviewers: aaron.ballman
Differential Revision: https://reviews.llvm.org/D76646
sequence on a glvalue expression.
If the sequence is supposed to perform an lvalue-to-rvalue conversion,
then one will be specified as the first conversion in the sequence.
Otherwise, one should not be invented.
DiagnosticErrorTrap is usually inappropriate because it indicates
whether an error message was rendered in a given region (and is
therefore affected by -ferror-limit and by suppression of errors if we
see an invalid declaration).
hasErrorOccurred() is usually inappropriate because it indicates
whethere an "error:" message was displayed, regardless of whether the
message was a warning promoted to an error, and therefore depends on
things like -Werror that are usually irrelevant.
Where applicable, CodeSynthesisContexts are used to attach notes to
the first diagnostic produced in a region of code, isnstead of using an
error trap and then attaching a note to whichever diagnostic happened to
be produced last (or suppressing the note if the final diagnostic is a
disabled warning!).
This is mostly NFC.
Summary:
For a none-function-like unresolved expression, clang builds a TypoExpr
for it, and tries to correct it afterwards. If the typo-correction
fails, clang just drops the whole expr.
This patch improves the recovery strategy -- if the typo-correction
fails, we preserve the AST by degrading the typo exprs to recovery
exprs.
This would improve toolings for "undef_var" broken cases:
```
void foo();
void test() {
fo^o(undef_var); // go-to-def, hover still works.
}
```
TESTED=ran tests with this patch + turn-on-recovery-ast patch, it breaks
one declare_variant_messages testcase (the diagnostics are slightly
changed), I think it is acceptable.
```
Error: 'error' diagnostics seen but not expected:
File llvm-project/clang/test/OpenMP/declare_variant_messages.cpp Line 16: expected 'match' clause on 'omp declare variant' directive
File llvm-project/clang/test/OpenMP/declare_variant_messages.cpp Line 57: expected 'match' clause on 'omp declare variant' directive
error: 'warning' diagnostics expected but not seen:
File llvm-project/clang/test/OpenMP/declare_variant_messages.cpp Line 47: the context selector 'kind' in the context set 'device' cannot have a score ('<invalid>'); score ignored
File llvm-project/clang/test/OpenMP/declare_variant_messages.cpp Line 87: the context selector 'kind' in the context set 'device' cannot have a score ('<invalid>'); score ignored
error: 'warning' diagnostics seen but not expected:
File llvm-project/clang/test/OpenMP/declare_variant_messages.cpp Line 47: the context selector 'kind' in the context set 'device' cannot have a score ('<recovery-expr>()'); score ignored
File llvm-project/clang/test/OpenMP/declare_variant_messages.cpp Line 87: the context selector 'kind' in the context set 'device' cannot have a score ('<recovery-expr>()'); score ignored
6 errors generated.
```
Reviewers: sammccall, jdoerfert
Subscribers: sstefan1, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80733
arr is a volatile non-local array.
This fixes a recent regression exposed by removing lvalue-to-rvalue
conversion of discarded volatile arrays. In passing, regularize the
rules we use to determine whether '(void)expr;' warns when expr is a
volatile glvalue.
Summary:
Previously, we treated CXXUuidofExpr as quite a special case: it was the
only kind of expression that could be a canonical template argument, it
could be a constant lvalue base object, and so on. In addition, we
represented the UUID value as a string, whose source form we did not
preserve faithfully, and that we partially parsed in multiple different
places.
With this patch, we create an MSGuidDecl object to represent the
implicit object of type 'struct _GUID' created by a UuidAttr. Each
UuidAttr holds a pointer to its 'struct _GUID' and its original
(as-written) UUID string. A non-value-dependent CXXUuidofExpr behaves
like a DeclRefExpr denoting that MSGuidDecl object. We cache an APValue
representation of the GUID on the MSGuidDecl and use it from constant
evaluation where needed.
This allows removing a lot of the special-case logic to handle these
expressions. Unfortunately, many parts of Clang assume there are only
a couple of interesting kinds of ValueDecl, so the total amount of
special-case logic is not really reduced very much.
This fixes a few bugs and issues:
* PR38490: we now support reading from GUID objects returned from
__uuidof during constant evaluation.
* Our Itanium mangling for a non-instantiation-dependent template
argument involving __uuidof no longer depends on which CXXUuidofExpr
template argument we happened to see first.
* We now predeclare ::_GUID, and permit use of __uuidof without
any header inclusion, better matching MSVC's behavior. We do not
predefine ::__s_GUID, though; that seems like a step too far.
* Our IR representation for GUID constants now uses the correct IR type
wherever possible. We will still fall back to using the
{i32, i16, i16, [8 x i8]}
layout if a definition of struct _GUID is not available. This is not
ideal: in principle the two layouts could have different padding.
Reviewers: rnk, jdoerfert
Subscribers: arphaman, cfe-commits, aeubanks
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78171
Summary: 5ade17e broke __is_pointer for Objective-C pointer types. This patch fixes the builtin and re-applies the change to type_traits.
Tags: #clang, #libc
Differential Revision: https://reviews.llvm.org/D77519
Sizeless types can't be used with "new", so it doesn't make sense
to use them with "delete" either. The SVE ACLE therefore doesn't
allow that.
This is slightly stronger than for normal incomplete types, since:
struct S;
void f(S *s) { delete s; }
is (by necessity) just a default-on warning rather than an error.
Differential Revision: https://reviews.llvm.org/D76219
new-expressions for a type T require sizeof(T) to be computable,
so the SVE ACLE does not allow them for sizeless types. At the moment:
auto f() { return new __SVInt8_t; }
creates a call to operator new with a zero size:
%call = call noalias nonnull i8* @_Znwm(i64 0)
This patch reports an appropriate error instead.
Differential Revision: https://reviews.llvm.org/D76218
Summary:
The same rules for throwing and catching incomplete types also apply
to sizeless types. This patch enforces that for throw statements.
It also make sure that we use "sizeless type" rather "incomplete type"
in the associated message. (Both are correct, but "sizeless type" is
more specific and hopefully more user-friendly.)
The SVE ACLE simply extends the rule for incomplete types to
sizeless types. However, throwing pointers to sizeless types
should not pose any real difficulty, so as an extension,
the clang implementation allows that.
Reviewers: sdesmalen, efriedma, rovka, rjmccall
Subscribers: tschuett, rkruppe, psnobl, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76088
a dependent context.
This matches the GCC behavior.
We track the enclosing template depth when determining whether a
statement expression is within a dependent context; there doesn't appear
to be any other reliable way to determine this.
We previously assumed they were neither value- nor
instantiation-dependent under any circumstances, which would lead to
crashes and other misbehavior.
Use castAs if we know the cast should succeed (or we're dereferencing without check), the castAs will assert as well so we can remove local non-null asserts.
dependent contexts.
We previously assumed they were neither value- nor
instantiation-dependent under any circumstances, which would lead to
crashes and other misbehavior.
is ambiguous, but only one of the possible lookup results could possibly
be right.
Clang recently started diagnosing ambiguity in more cases, and this
broke the build of Firefox. GCC, ICC, MSVC, and previous versions of
Clang all accept some forms of ambiguity here (albeit different ones in
each case); this patch mostly accepts anything any of those compilers
accept.
Summary:
Right now we annotate C++'s `operator new` with `noalias` attribute,
which very much is healthy for optimizations.
However as per [[ http://eel.is/c++draft/basic.stc.dynamic.allocation | `[basic.stc.dynamic.allocation]` ]],
there are more promises on global `operator new`, namely:
* non-`std::nothrow_t` `operator new` *never* returns `nullptr`
* If `std::align_val_t align` parameter is taken, the pointer will also be `align`-aligned
* ~~global `operator new`-returned pointer is `__STDCPP_DEFAULT_NEW_ALIGNMENT__`-aligned ~~ It's more caveated than that.
Supplying this information may not cause immediate landslide effects
on any specific benchmarks, but it for sure will be healthy for optimizer
in the sense that the IR will better reflect the guarantees provided in the source code.
The caveat is `-fno-assume-sane-operator-new`, which currently prevents emitting `noalias`
attribute, and is automatically passed by Sanitizers ([[ https://bugs.llvm.org/show_bug.cgi?id=16386 | PR16386 ]]) - should it also cover these attributes?
The problem is that the flag is back-end-specific, as seen in `test/Modules/explicit-build-flags.cpp`.
But while it is okay to add `noalias` metadata in backend, we really should be adding at least
the alignment metadata to the AST, since that allows us to perform sema checks on it.
Reviewers: erichkeane, rjmccall, jdoerfert, eugenis, rsmith
Reviewed By: rsmith
Subscribers: xbolva00, jrtc27, atanasyan, nlopes, cfe-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D73380
Summary:
There was even a TODO for this.
The main motivation is to make use of call-site based
`__attribute__((alloc_align(param_idx)))` validation (D72996).
Reviewers: rsmith, erichkeane, aaron.ballman, jdoerfert
Reviewed By: rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D73020
Compute and propagate conversion kind to diagnostics helper in C++
to provide more specific diagnostics about incorrect implicit
conversions in assignments, initializations, params, etc...
Duplicated some diagnostics as errors because C++ is more strict.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74116
1) Fix a regression in llvmorg-11-init-2485-g0e3a4877840 that would
reject some cases where a class name is shadowed by a typedef-name
causing a destructor declaration to be rejected. Prefer a tag type over
a typedef in destructor name lookup.
2) Convert the "type in destructor declaration is a typedef" error to an
error-by-default ExtWarn to allow codebases to turn it off. GCC and MSVC
do not enforce this rule.
Also add extension warnings for the cases that are disallowed by the
current rules for destructor name lookup, refactor and simplify the
lookup code, and improve the diagnostic quality when lookup fails.
The special case we previously supported for converting
p->N::S<int>::~S() from naming a class template into naming a
specialization thereof is subsumed by a more general rule here (which is
also consistent with Clang's historical behavior and that of other
compilers): if we can't find a suitable S in N, also look in N::S<int>.
The extension warnings are off by default, except for a warning when
lookup for p->N::S::~T() looks for T in scope instead of in N (or N::S).
That seems sufficiently heinous to warn on by default, especially since
we can't support it for a dependent nested-name-specifier.
We would previously try to evaluate atomic constraints of non-template functions as-is,
and since they are now unevaluated at first, this would cause incorrect evaluation (bugs #44657, #44656).
Substitute into atomic constraints of non-template functions as we would atomic constraints
of template functions, in order to rebuild the expressions in a constant-evaluated context.
a temporary.
We previously failed to materialize a temporary when performing an
implicit conversion to a reference type, resulting in our thinking the
argument was a value rather than a reference in some cases.
Implement support for C++2a requires-expressions.
Re-commit after compilation failure on some platforms due to alignment issues with PointerIntPair.
Differential Revision: https://reviews.llvm.org/D50360
A TemplateIdAnnotation represents only a template-id, not a
nested-name-specifier plus a template-id. Don't make a redundant copy of
the CXXScopeSpec and store it on the template-id annotation.
This slightly improves error recovery by more properly handling the case
where we would form an invalid CXXScopeSpec while parsing a typename
specifier, instead of accidentally putting the token stream into a
broken "annot_template_id with a scope specifier, but with no preceding
annot_cxxscope token" state.
GCC supports the conditional operator on VectorTypes that acts as a
'select' in C++ mode. This patch implements the support. Types are
converted as closely to GCC's behavior as possible, though in a few
places consistency with our existing vector type support was preferred.
Note that this implementation is different from the OpenCL version in a
number of ways, so it unfortunately required a different implementation.
First, the SEMA rules and promotion rules are significantly different.
Secondly, GCC implements COND[i] != 0 ? LHS[i] : RHS[i] (where i is in
the range 0- VectorSize, for each element). In OpenCL, the condition is
COND[i] < 0 ? LHS[i]: RHS[i].
In the process of implementing this, it was also required to make the
expression COND ? LHS : RHS type dependent if COND is type dependent,
since the type is now dependent on the condition. For example:
T ? 1 : 2;
Is not typically type dependent, since the result can be deduced from
the operands. HOWEVER, if T is a VectorType now, it could change this
to a 'select' (basically a swizzle with a non-constant mask) with the 1
and 2 being promoted to vectors themselves.
While this is a change, it is NOT a standards incompatible change. Based
on my (and D. Gregor's, at the time of writing the code) reading of the
standard, the expression is supposed to be type dependent if ANY
sub-expression is type dependent.
Differential Revision: https://reviews.llvm.org/D71463
type computation, in preparation for P0388R4, which adds another few
cases here.
We now properly handle forming multi-level composite pointer types
involving nested Objective-C pointer types (as is consistent with
including them as part of the notion of 'similar types' on which this
rule is based). We no longer lose non-CVR qualifiers on nested pointer
types.
The language wording change forgot to update overload resolution to rank
implicit conversion sequences based on qualification conversions in
reference bindings. The anticipated resolution for that oversight is
implemented here -- we order candidates based on qualification
conversion, not only on top-level cv-qualifiers, including ranking
reference bindings against non-reference bindings if they differ in
non-top-level qualification conversions.
For OpenCL/C++, this allows reference binding between pointers with
differing (nested) address spaces. This makes the behavior of reference
binding consistent with that of implicit pointer conversions, as is the
purpose of this change, but that pre-existing behavior for pointer
conversions is itself probably not correct. In any case, it's now
consistently the same behavior and implemented in only one place.
This reinstates commit de21704ba9,
reverted in commit d8018233d1, with
workarounds for some overload resolution ordering problems introduced by
CWG2352.
This reverts commit de21704ba9.
Regressed/causes this to error due to ambiguity:
void f(const int * const &);
void f(int *);
int main() {
int * x;
f(x);
}
(in case it's important - the original case where this turned up was a
member function overload in a class template with, essentially:
f(const T1&)
f(T2*)
(where T1 == X const *, T2 == X))
It's not super clear to me if this ^ is expected behavior, in which case
I'm sorry about the revert & happy to look into ways to fix the original
code.
The language wording change forgot to update overload resolution to rank
implicit conversion sequences based on qualification conversions in
reference bindings. The anticipated resolution for that oversight is
implemented here -- we order candidates based on qualification
conversion, not only on top-level cv-qualifiers.
For OpenCL/C++, this allows reference binding between pointers with
differing (nested) address spaces. This makes the behavior of reference
binding consistent with that of implicit pointer conversions, as is the
purpose of this change, but that pre-existing behavior for pointer
conversions is itself probably not correct. In any case, it's now
consistently the same behavior and implemented in only one place.
implementing the resolution of CWG2352.
No functionality change, except that we now convert the referent of a
reference binding to the underlying type of the reference in more cases;
we used to happen to preserve the type sugar from the referent if the
only type change was in the cv-qualifiers.
This exposed a bug in how we generate code for trivial assignment
operators: if the type sugar (particularly the may_alias attribute)
got lost during reference binding, we'd use the "wrong" TBAA information
for the load during the assignment.
This covers:
* usual arithmetic conversions (comparisons, arithmetic, conditionals)
between different enumeration types
* usual arithmetic conversions between enums and floating-point types
* comparisons between two operands of array type
The deprecation warnings are on-by-default (in C++20 compilations); it
seems likely that these forms will become ill-formed in C++23, so
warning on them now by default seems wise.
For the first two bullets, off-by-default warnings were also added for
all the cases where we didn't already have warnings (covering language
modes prior to C++20). These warnings are in subgroups of the existing
-Wenum-conversion (except that the first case is not warned on if either
enumeration type is anonymous, consistent with our existing
-Wenum-conversion warnings).
Clang was creating a DerivedToBase ImplicitCastExpr that was also
casting between address spaces as part of the second step in the
standard conversion sequence. Defer the address space conversion to
the third step in the sequence instead, such that we get a separate
ImplicitCastExpr for the address space conversion.
Differential Revision: https://reviews.llvm.org/D70605
When throwing objects with deleted copy constructors, the copy ctor
field of the catchable type should remain null and the mangle name
changes. This already worked in simple cases, but in cases involving
non-trivial subobjects, sometimes LookupCopyingConstructor could return
a non-null but deleted constructor decl. Skip those and don't reference
them.
Fixes PR43680
See also: D67515
- For the given call expression we would end up repeatedly
trying to transform the same expression over and over again
- Fix is to keep the old TransformCache when checking for ambiguity
Differential Revision: https://reviews.llvm.org/D69060
This fixes an assertion failure in the case where an implicit conversion for a
function call involves an lvalue function conversion, and makes the AST for
initializations involving implicit lvalue function conversions more accurate.
Differential Revision: https://reviews.llvm.org/D66437
llvm-svn: 375313
The static analyzer is warning about potential null dereferences, but in these cases we should be able to use castAs<> directly and if not assert will fire for us.
llvm-svn: 375101
whose value is not ignored.
We don't warn on all the cases that are deprecated: specifically, we
choose to not warn for now if there are parentheses around the
assignment but its value is not actually used. This seems like a more
defensible rule, particularly for cases like sizeof(v = a), where the
parens are part of the operand rather than the sizeof syntax.
llvm-svn: 374135
We previously failed to treat an array with an instantiation-dependent
but not value-dependent bound as being an instantiation-dependent type.
We now track the array bound expression as part of a constant array type
if it's an instantiation-dependent expression.
llvm-svn: 373685
of 'typeid'.
This is a rare place where it's valid for a function type to be
substituted but not valid for a qualified function type to be
substituted, so needs a special check.
llvm-svn: 373648
The static analyzer is warning about potential null dereferences, but in these cases we should be able to use castAs<RecordType> directly and if not assert will fire for us.
llvm-svn: 373584
Summary: This patch fixes the __is_signed builtin type trait to work with floating point types and enums. Now, the builtin will return true if it is passed a floating point type and false for an enum type.
Reviewers: EricWF, rsmith, erichkeane, craig.topper, efriedma
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67897
llvm-svn: 372621
Summary:
This fixes a bug introduced in D62648, where Clang could infinite loop
if it became stuck on a single TypoCorrection when it was supposed to
be testing ambiguous corrections. Although not a common case, it could
happen if there are multiple possible corrections with the same edit
distance.
The fix is simply to wipe the TypoExpr from the `TransformCache` so that
the call to `TransformTypoExpr` doesn't use the `CachedEntry`.
Reviewers: rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67515
llvm-svn: 371859
Summary:
As Typo Resolution can create new TypoExprs while resolving typos,
it is necessary to recurse through the expression to search for more
typos.
This should fix the assertion failure in `clang::Sema::~Sema()`:
`DelayedTypos.empty() && "Uncorrected typos!"`
Notes:
- In case some TypoExprs are created but thrown away, Sema
now has a Vector that is used to keep track of newly created
typos.
- For expressions with multiple typos, we only give suggestions
if we are able to resolve all typos in the expression
- This patch is similar to D37521 except that it does not eagerly
commit to a correction for the first typo in the expression.
Instead, it will search for corrections which fix all of the
typos in the expression.
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D62648
llvm-svn: 369427
When handling a member access into a non-class, non-ObjC-object type, we
would perform a lookup into the surrounding scope as if for an
unqualified lookup. If the member access was followed by a '<' and this
lookup (or the typo-correction for it) found a template name, we'd treat
the member access as naming that template.
Now we treat such accesses as never naming a template if the type of the
object expression is of vector type, so that vector component accesses
are never misinterpreted as naming something else. This is not entirely
correct, since it is in fact valid to name a template from the enclosing
scope in this context, when invoking a pseudo-destructor for the vector
type via an alias template, but that's very much a corner case, and this
change leaves that case only as broken as the corresponding case for
Objective-C types is.
This incidentally adds support for dr2292, which permits a 'template'
keyword at the start of a member access naming a pseudo-destructor.
llvm-svn: 368940
Summary:
Simplify code a bit and add assertion to address post-landing comments
from D64083.
Subscribers: yaxunl, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64804
llvm-svn: 366306
Summary:
This patch ensures that the following code is compiled identically with
-cl-std=CL2.0 and -fblocks -cl-std=c++.
kernel void test(void) {
void (^const block_A)(void) = ^{
return;
};
}
A new test is not added because cl20-device-side-enqueue.cl will cover
this once blocks are further improved for C++ for OpenCL.
The changes to Sema::PerformImplicitConversion are based on
the parts of Sema::CheckAssignmentConstraints on block pointer
conversions.
Reviewers: rjmccall, Anastasia
Subscribers: yaxunl, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64083
llvm-svn: 365500
This reverts r365382 (git commit 8b1becf2e3)
Appears to regress this semi-reduced fragment of valid code from windows
SDK headers:
#define InterlockedIncrement64 _InterlockedIncrement64
extern "C" __int64 InterlockedIncrement64(__int64 volatile *Addend);
#pragma intrinsic(_InterlockedIncrement64)
unsigned __int64 InterlockedIncrement(unsigned __int64 volatile *Addend) {
return (unsigned __int64)(InterlockedIncrement64)((volatile __int64 *)Addend);
}
Found on a buildbot here, but no mail was sent due to it already being
red:
http://lab.llvm.org:8011/builders/sanitizer-windows/builds/48067
llvm-svn: 365393
Without an explicit declaration for placement new, clang would reject
uses of placement new with "'default new' is not supported in OpenCL
C++". This may mislead users into thinking that placement new is not
supported, see e.g. PR42060.
Clarify that placement new requires an explicit declaration.
Differential Revision: https://reviews.llvm.org/D63561
llvm-svn: 364423
Summary:
this is a bugfixe for [[ https://bugs.llvm.org/show_bug.cgi?id=41400 | PR41400 ]]
added nullptr check at the relevent place and test
Reviewers: rsmith, riccibruno
Reviewed By: rsmith
Subscribers: jkooker, jkorous, riccibruno, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60523
llvm-svn: 363360
most / all other Expr subclasses.
This reinstates r362551, reverted in r362597, with a fix to a bug that
caused MemberExprs to sometimes have a null FoundDecl after a round-trip
through an AST file.
llvm-svn: 362756
packs.
Two changes:
* Track odr-use via FunctionParmPackExprs to properly handle dependent
odr-uses of packs in generic lambdas.
* Do not instantiate implicit captures; instead, regenerate them by
instantiating the body of the lambda. This is necessary to
distinguish between cases where only one element of a pack is
captured and cases where the entire pack is captured.
This reinstates r362358 (reverted in r362375) with a fix for an
uninitialized variable use in UpdateMarkingForLValueToRValue.
llvm-svn: 362531
Two changes:
* Track odr-use via FunctionParmPackExprs to properly handle dependent
odr-uses of packs in generic lambdas.
* Do not instantiate implicit captures; instead, regenerate them by
instantiating the body of the lambda. This is necessary to
distinguish between cases where only one element of a pack is
captured and cases where the entire pack is captured.
........
Fixes http://lab.llvm.org:8011/builders/llvm-clang-x86_64-expensive-checks-win buildbot failures
llvm-svn: 362375
packs.
Two changes:
* Track odr-use via FunctionParmPackExprs to properly handle dependent
odr-uses of packs in generic lambdas.
* Do not instantiate implicit captures; instead, regenerate them by
instantiating the body of the lambda. This is necessary to
distinguish between cases where only one element of a pack is
captured and cases where the entire pack is captured.
llvm-svn: 362358
and returned to the context in which 'this' should be captured.
This means we now always mark 'this' referenced from the context in
which it's actually referenced, rather than potentially from some
context nested within that.
llvm-svn: 362182
In response to https://bugs.llvm.org/show_bug.cgi?id=33235, it became
clear that the current mechanism of hacking through checks for the
exception specification of a function gets confused really quickly when
there are alternate exception specifiers.
This patch introcues EST_NoThrow, which is the equivilent of
EST_noexcept when caused by EST_noThrow. The existing implementation is
left in place to cover functions with no FunctionProtoType.
Differential Revision: https://reviews.llvm.org/D62435
llvm-svn: 362119
capturing expression or statement.
No functionality change yet. The intent is that we will also delay
building the initialization expression until the enclosing context, so
that:
a) we build the initialization expression in the right context, and
b) we can elide captures that are not odr-used, as suggested by P0588R1.
This also consolidates some duplicated code building capture fields into
a single place.
llvm-svn: 361893
r355317 changed builtins/allocation functions to use the default calling
convention in order to support platforms that use non-cdecl calling
conventions by default.
However the default calling convention is overridable on Windows 32 bit
implementations with some of the /G options. The intent is to permit the
user to set the calling convention of normal functions, however it
should NOT apply to builtins and C++ allocation functions.
This patch ensures that the builtin/allocation functions always use the
Target specific Calling Convention, ignoring the user overridden version
of said default.
llvm-svn: 361507
This fixes a crash where we would neglect to mark a destructor referenced for an
__attribute__((no_destory)) array. The destructor is needed though, since if an
exception is thrown we need to cleanup the elements.
rdar://48462498
Differential revision: https://reviews.llvm.org/D61165
llvm-svn: 360446
Darwin if the version of libc++abi isn't new enough to include the fix
in r319123
This patch resurrects r264998, which was committed to work around a bug
in libc++abi that was causing _cxa_allocate_exception to return a memory
that wasn't double-word aligned.
http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20160328/154332.html
In addition, this patch makes clang issue a warning if the type of the
thrown object requires an alignment that is larger than the minimum
guaranteed by the target C++ runtime.
rdar://problem/49864414
Differential Revision: https://reviews.llvm.org/D61667
llvm-svn: 360404
template name is not visible to unqualified lookup.
In order to support this without a severe degradation in our ability to
diagnose typos in template names, this change significantly restructures
the way we handle template-id-shaped syntax for which lookup of the
template name finds nothing.
Instead of eagerly diagnosing an undeclared template name, we now form a
placeholder template-name representing a name that is known to not find
any templates. When the parser sees such a name, it attempts to
disambiguate whether we have a less-than comparison or a template-id.
Any diagnostics or typo-correction for the name are delayed until its
point of use.
The upshot should be a small improvement of our diagostic quality
overall: we now take more syntactic context into account when trying to
resolve an undeclared identifier on the left hand side of a '<'. In
fact, this works well enough that the backwards-compatible portion (for
an undeclared identifier rather than a lookup that finds functions but
no function templates) is enabled in all language modes.
llvm-svn: 360308
new expression.
This was voted into C++20 as a defect report resolution, so we
retroactively apply it to all prior language modes (though it can never
actually be used before C++11 mode).
llvm-svn: 360006
Because diagnostics and their notes are not connected at the API level,
if the error message for an overload is emitted, then the overload
candidates are completed - if a diagnostic is emitted during that work,
the notes related to overload candidates would be attached to the latter
diagnostic, not the original error. Sort of worse, if the latter
diagnostic was disabled, the notes are disabled.
Reviewers: rsmith
Differential Revision: https://reviews.llvm.org/D61357
llvm-svn: 359854