Summary: Change and replace some functions which IE does not support. This patch is made as a continuation of D92928 revision. Also improve hot keys behavior.
Differential Revision: https://reviews.llvm.org/D107366
This is a rather common feedback we get from out leak checkers: bug reports are
really short, and are contain barely any usable information on what the analyzer
did to conclude that a leak actually happened.
This happens because of our bug report minimizing effort. We construct bug
reports by inspecting the ExplodedNodes that lead to the error from the bottom
up (from the error node all the way to the root of the exploded graph), and mark
entities that were the cause of a bug, or have interacted with it as
interesting. In order to make the bug report a bit less verbose, whenever we
find an entire function call (from CallEnter to CallExitEnd) that didn't talk
about any interesting entity, we prune it (click here for more info on bug
report generation). Even if the event to highlight is exactly this lack of
interaction with interesting entities.
D105553 generalized the visitor that creates notes for these cases. This patch
adds a new kind of NoStateChangeVisitor that leaves notes in functions that
took a piece of dynamically allocated memory that later leaked as parameter,
and didn't change its ownership status.
Differential Revision: https://reviews.llvm.org/D105553
Preceding discussion on cfe-dev: https://lists.llvm.org/pipermail/cfe-dev/2021-June/068450.html
NoStoreFuncVisitor is a rather unique visitor. As VisitNode is invoked on most
other visitors, they are looking for the point where something changed -- change
on a value, some checker-specific GDM trait, a new constraint.
NoStoreFuncVisitor, however, looks specifically for functions that *didn't*
write to a MemRegion of interesting. Quoting from its comments:
/// Put a diagnostic on return statement of all inlined functions
/// for which the region of interest \p RegionOfInterest was passed into,
/// but not written inside, and it has caused an undefined read or a null
/// pointer dereference outside.
It so happens that there are a number of other similar properties that are
worth checking. For instance, if some memory leaks, it might be interesting why
a function didn't take ownership of said memory:
void sink(int *P) {} // no notes
void f() {
sink(new int(5)); // note: Memory is allocated
// Well hold on, sink() was supposed to deal with
// that, this must be a false positive...
} // warning: Potential memory leak [cplusplus.NewDeleteLeaks]
In here, the entity of interest isn't a MemRegion, but a symbol. The property
that changed here isn't a change of value, but rather liveness and GDM traits
managed by MalloChecker.
This patch moves some of the logic of NoStoreFuncVisitor to a new abstract
class, NoStateChangeFuncVisitor. This is mostly calculating and caching the
stack frames in which the entity of interest wasn't changed.
Descendants of this interface have to define 3 things:
* What constitutes as a change to an entity (this is done by overriding
wasModifiedBeforeCallExit)
* What the diagnostic message should be (this is done by overriding
maybeEmitNoteFor.*)
* What constitutes as the entity of interest being passed into the function (this
is also done by overriding maybeEmitNoteFor.*)
Differential Revision: https://reviews.llvm.org/D105553
Some files still contained the old University of Illinois Open Source
Licence header. This patch replaces that with the Apache 2 with LLVM
Exception licence.
Differential Revision: https://reviews.llvm.org/D107528
This change follows up on a FIXME submitted with D105974. This change simply let's the reference case fall through to return a concrete 'true'
instead of a nonloc pointer of appropriate length set to NULL.
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D107720
In some cases, when the execution path of the diagnostic
goes back and forth, arrows can overlap and create a mess.
Dimming arrows that are not relevant at the moment, solves this issue.
They are still visible, but don't draw too much attention.
Differential Revision: https://reviews.llvm.org/D92928
This commit adds a very first version of this feature.
It is off by default and has to be turned on by checking the
corresponding box. For this reason, HTML reports still keep
control notes (aka grey bubbles).
Further on, we plan on attaching arrows to events and having all arrows
not related to a currently selected event barely visible. This will
help with reports where control flow goes back and forth (eg in loops).
Right now, it can get pretty crammed with all the arrows.
Differential Revision: https://reviews.llvm.org/D92639
This cleanup patch refactors a bunch of functional duplicates of
getDecltypeForParenthesizedExpr into a common implementation.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: aaronpuchert
Differential Revision: https://reviews.llvm.org/D100713
This change is an extension to D103967 where I added dump methods for
(dis)equality classes of the State. There, the (dis)equality classes and their
contents are dumped in an ordered fashion, they are ordered based on their
string representation. This is very useful once we start to use FileCheck to
test the State dump in certain tests.
Differential Revision: https://reviews.llvm.org/D106642
https://bugs.llvm.org/show_bug.cgi?id=51109
When we merged two classes, `*this` became an obsolete representation of
the new `State`. This is b/c the member relations had changed during the
previous merge of another member of the same class in a way that `*this`
had no longer any members. (`mergeImpl` might keep the member relations
to `Other` and could dissolve `*this`.)
Differential Revision: https://reviews.llvm.org/D106285
This patch:
- Fixes how the std-namespace test is written in SmartPtrModelling
(now accounts for functions with no Decl available)
- Adds the smart pointer checker flag check where it was missing
Differential Revision: https://reviews.llvm.org/D106296
The checker warns if a stream is read that is already in end-of-file
(EOF) state.
The commit adds indication of the last location where the EOF flag is set
on the stream.
Reviewed By: Szelethus
Differential Revision: https://reviews.llvm.org/D104925
This patch handles the `std::swap` function specialization
for `std::unique_ptr`. Implemented to be very similar to
how `swap` method is handled
Differential Revision: https://reviews.llvm.org/D104300
This change addresses this assertion that occurs in a downstream
compiler with a custom target.
```APInt.h:1151: bool llvm::APInt::operator==(const llvm::APInt &) const: Assertion `BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"'```
No covering test case is susbmitted with this change since this crash
cannot be reproduced using any upstream supported target. The test case
that exposes this issue is as simple as:
```lang=c++
void test(int * p) {
int * q = p-1;
if (q) {}
if (q) {} // crash
(void)q;
}
```
The custom target that exposes this problem supports two address spaces,
16-bit `char`s, and a `_Bool` type that maps to 16-bits. There are no upstream
supported targets with similar attributes.
The assertion appears to be happening as a result of evaluating the
`SymIntExpr` `(reg_$0<int * p>) != 0U` in `VisitSymIntExpr` located in
`SimpleSValBuilder.cpp`. The `LHS` is evaluated to `32b` and the `RHS` is
evaluated to `16b`. This eventually leads to the assertion in `APInt.h`.
While this change addresses the crash and passes LITs, two follow-ups
are required:
1) The remainder of `getZeroWithPtrWidth()` and `getIntWithPtrWidth()`
should be cleaned up following this model to prevent future
confusion.
2) We're not sure why references are found along with the modified
code path, that should not be the case. A more principled
fix may be found after some further comprehension of why this
is the case.
Acks: Thanks to @steakhal and @martong for the discussions leading to this
fix.
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D105974
This patch handles the `<<` operator defined for `std::unique_ptr` in
the std namespace (ignores custom overloads of the operator).
Differential Revision: https://reviews.llvm.org/D105421
This patch handles all the comparision methods (defined via overloaded
operators) on std::unique_ptr. These operators compare the underlying
pointers, which is modelled by comparing the corresponding inner-pointer
SVal. There is also a special case for comparing the same pointer.
Differential Revision: https://reviews.llvm.org/D104616
../../git/llvm-project/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp:2395:17: warning: 'clang::ento::ProgramStateRef {anonymous}::RangeConstraintManager::setRange(clang::ento::ProgramStateRef, {anonymous}::EquivalenceClass, clang::ento::RangeSet)' defined but not used [-Wunused-function]
../../git/llvm-project/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp:2384:10: warning: 'clang::ento::RangeSet {anonymous}::RangeConstraintManager::getRange(clang::ento::ProgramStateRef, {anonymous}::EquivalenceClass)' defined but not used [-Wunused-function]
Differential Revision: https://reviews.llvm.org/D106063
`PathSensitiveBughReport` has a function to mark a symbol as interesting but
it was not possible to clear this flag. This can be useful in some cases,
so the functionality is added.
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D105637
This patch simplifies the way we deal with (dis)equalities.
Due to the symmetry between constraint handler and range inferrer,
we can have very similar implementations of logic handling
questions about (dis)equality and assumptions involving (dis)equality.
It also helps us to remove one more visitor, and removes uncertainty
that we got all the right places to put `trackNE` and `trackEQ`.
Differential Revision: https://reviews.llvm.org/D105693
The new component is a symmetric response to SymbolicRangeInferrer.
While the latter is the unified component, which answers all the
questions what does the solver knows about a particular symbolic
expression, assignor associates new constraints (aka "assumes")
with symbolic expressions and can imply additional knowledge that
the solver can extract and use later on.
- Why do we need it and why is SymbolicRangeInferrer not enough?
As it is noted before, the inferrer only helps us to get the most
precise range information based on the existing knowledge and on the
mathematical foundations of different operations that symbolic
expressions actually represent. It doesn't introduce new constraints.
The assignor, on the other hand, can impose constraints on other
symbols using the same domain knowledge.
- But for some expressions, SymbolicRangeInferrer looks into constraints
for similar expressions, why can't we do that for all the cases?
That's correct! But in order to do something like this, we should
have a finite number of possible "similar expressions".
Let's say we are asked about `$a - $b` and we know something about
`$b - $a`. The inferrer can invert this expression and check
constraints for `$b - $a`. This is simple!
But let's say we are asked about `$a` and we know that `$a * $b != 0`.
In this situation, we can imply that `$a != 0`, but the inferrer shouldn't
try every possible symbolic expression `X` to check if `$a * X` or
`X * $a` is constrained to non-zero.
With the assignor mechanism, we can catch this implication right at
the moment we associate `$a * $b` with non-zero range, and set similar
constraints for `$a` and `$b` as well.
Differential Revision: https://reviews.llvm.org/D105692
Summary: This patch is a part of an attempt to obtain more
timer data from the analyzer. In this patch, we try to use
LLVM::TimeRecord to save time before starting the analysis
and to print the time that a specific function takes while
getting analyzed.
The timer data is printed along with the
-analyzer-display-progress outputs.
ANALYZE (Syntax): test.c functionName : 0.4 ms
ANALYZE (Path, Inline_Regular): test.c functionName : 2.6 ms
Authored By: RithikSharma
Reviewer: NoQ, xazax.hun, teemperor, vsavchenko
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D105565
The `-analyzer-display-progress` displayed the function name of the
currently analyzed function. It differs in C and C++. In C++, it
prints the argument types as well in a comma-separated list.
While in C, only the function name is displayed, without the brackets.
E.g.:
C++: foo(), foo(int, float)
C: foo
In crash traces, the analyzer dumps the location contexts, but the
string is not enough for `-analyze-function` in C++ mode.
This patch addresses the issue by dumping the proper function names
even in stack traces.
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D105708
C++23 will make these conversions ambiguous - so fix them to make the
codebase forward-compatible with C++23 (& a follow-up change I've made
will make this ambiguous/invalid even in <C++23 so we don't regress
this & it generally improves the code anyway)
Prior to this patch, we always gave priority to constraints that we
actually know about symbols in question. However, these can get
outdated and we can get better results if we look at all possible
sources of knowledge, including sub-expressions.
Differential Revision: https://reviews.llvm.org/D105436
Fix offset calculation routines in padding checker to avoid assertion
errors described in bugzilla issue 50426. The fields that are subojbects
of zero size, marked with [[no_unique_address]] or empty bitfields will
be excluded from padding calculation routines.
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D104097
It seems like ExprEngine::handleLVectorSplat() was used at only 2
places. It might be better to directly inline them for readability.
It seems like these cases were not covered by tests according to my
coverage measurement, so I'm adding tests as well, demonstrating that no
behavior changed.
Besides that, I'm handling CK_MatrixCast similarly to how the rest of
the unhandled casts are evaluated.
Differential Revision: https://reviews.llvm.org/D105125
Reviewed by: NoQ
Previously `LValueToRValueBitCast`s were modeled in the same way how
a regular `BitCast` was. However, this should not produce an l-value.
Modeling bitcasts accurately is tricky, so it's probably better to
model this expression by binding a fresh conjured value.
The following code should not result in a diagnostic:
```lang=C++
__attribute__((always_inline))
static inline constexpr unsigned int_castf32_u32(float __A) {
return __builtin_bit_cast(unsigned int, __A); // no-warning
}
```
Previously, it reported
`Address of stack memory associated with local variable '__A' returned
to caller [core.StackAddressEscape]`.
Differential Revision: https://reviews.llvm.org/D105017
Reviewed by: NoQ, vsavchenko
It turns out that the CheckerManager::hasPathSensitiveCheckers() missed
checking for the BeginFunctionCheckers.
It seems like other callbacks are also missing:
- ObjCMessageNilCheckers
- BeginFunctionCheckers
- NewAllocatorCheckers
- PointerEscapeCheckers
- EndOfTranslationUnitCheckers
In this patch, I wanted to use a fold-expression, but until C++17
arrives we are left with the old-school method.
When I tried to write a unittest I observed an interesting behavior. I
subscribed only to the BeginFunction event, it was not fired.
However, when I also defined the PreCall with an empty handler, suddenly
both fired.
I could add this test demonstrating the issue, but I don't think it
would serve much value in a long run. I don't expect regressions for
this.
However, I think it would be great to enforce the completeness of this
list in a runtime check.
I could not come up with a solution for this though.
PS: Thank you @Szelethus for helping me debugging this.
Differential Revision: https://reviews.llvm.org/D105101
Reviewed by: vsavchenko
This commit adds a function to the top-class of SVal hierarchy to
provide type information about the value. That can be extremely
useful when this is the only piece of information that the user is
actually caring about.
Additionally, this commit introduces a testing framework for writing
unit-tests for symbolic values.
Differential Revision: https://reviews.llvm.org/D104550
This reverts commit 6f3b775c3e.
Test fails flakily, see comments on https://reviews.llvm.org/D103967
Also revert follow-up "[Analyzer] Attempt to fix windows bots test
failure b/c of new-line"
This reverts commit fe0e861a4d.
Since RangeSet::Factory actually contains BasicValueFactory, we can
remove value factory from many function signatures inside the solver.
Differential Revision: https://reviews.llvm.org/D105005
Consider the code
```
void f(int a0, int b0, int c)
{
int a1 = a0 - b0;
int b1 = (unsigned)a1 + c;
if (c == 0) {
int d = 7L / b1;
}
}
```
At the point of divisiion by `b1` that is considered to be non-zero,
which results in a new constraint for `$a0 - $b0 + $c`. The type
of this sym is unsigned, however, the simplified sym is `$a0 -
$b0` and its type is signed. This is probably the result of the
inherent improper handling of casts. Anyway, Range assignment
for constraints use this type information. Therefore, we must
make sure that first we simplify the symbol and only then we
assign the range.
Differential Revision: https://reviews.llvm.org/D104844
This is mostly a mechanical change, but a testcase that contains
parts of the StringRef class (clang/test/Analysis/llvm-conventions.cpp)
isn't touched.
The checker contains check for passing a NULL stream argument.
This change should make more easy to identify where the passed pointer
becomes NULL.
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D104640
This fixes a crash in MallocChecker for the situation when operator new (delete) is invoked via NTTP and makes the behavior of CallContext.getCalleeDecl(Expr) identical to CallEvent.getDecl().
Reviewed By: vsavchenko
Differential Revision: https://reviews.llvm.org/D103025
D66572 separated BugReport and BugReporter into basic and path sensitive
versions. As a result, checker silencing, which worked deep in the path
sensitive report generation facilities became specific to it. DeadStoresChecker,
for instance, despite being in the static analyzer, emits non-pathsensitive
reports, and was impossible to silence.
This patch moves the corresponding code before the call to the virtual function
generateDiagnosticForConsumerMap (which is overriden by the specific kinds of
bug reporters). Although we see bug reporting as relatively lightweight compared
to the analysis, this will get rid of several steps we used to throw away.
Quoting from D65379:
At a very high level, this consists of 3 steps:
For all BugReports in the same BugReportEquivClass, collect all their error
nodes in a set. With that set, create a new, trimmed ExplodedGraph whose leafs
are all error nodes.
Until a valid report is found, construct a bug path, which is yet another
ExplodedGraph, that is linear from a given error node to the root of the graph.
Run all visitors on the constructed bug path. If in this process the report got
invalidated, start over from step 2.
Checker silencing used to kick in after all of these. Now it does before any of
them :^)
Differential Revision: https://reviews.llvm.org/D102914
Change-Id: Ice42939304516f2bebd05a1ea19878b89c96a25d