Commit Graph

4 Commits

Author SHA1 Message Date
Tomas Matheson b14a6f06cc [ARM][MVE] vcreateq lane ordering for big endian
Use of bitcast resulted in lanes being swapped for vcreateq with big
endian. Fix this by using vreinterpret. No code change for little
endian. Adds IR lit test.

Differential Revision: https://reviews.llvm.org/D101606
2021-04-30 13:48:05 +01:00
David Green eecba95067 [ARM] Replace arm vendor with none. NFC 2020-04-22 18:19:35 +01:00
Simon Tatham 961530fdc9 [ARM,MVE] Fix vreinterpretq in big-endian mode.
Summary:
In big-endian MVE, the simple vector load/store instructions (i.e.
both contiguous and non-widening) don't all store the bytes of a
register to memory in the same order: it matters whether you did a
VSTRB.8, VSTRH.16 or VSTRW.32. Put another way, the in-register
formats of different vector types relate to each other in a different
way from the in-memory formats.

So, if you want to 'bitcast' or 'reinterpret' one vector type as
another, you have to carefully specify which you mean: did you want to
reinterpret the //register// format of one type as that of the other,
or the //memory// format?

The ACLE `vreinterpretq` intrinsics are specified to reinterpret the
register format. But I had implemented them as LLVM IR bitcast, which
is specified for all types as a reinterpretation of the memory format.
So a `vreinterpretq` intrinsic, applied to values already in registers,
would code-generate incorrectly if compiled big-endian: instead of
emitting no code, it would emit a `vrev`.

To fix this, I've introduced a new IR intrinsic to perform a
register-format reinterpretation: `@llvm.arm.mve.vreinterpretq`. It's
implemented by a trivial isel pattern that expects the input in an
MQPR register, and just returns it unchanged.

In the clang codegen, I only emit this new intrinsic where it's
actually needed: I prefer a bitcast wherever it will have the right
effect, because LLVM understands bitcasts better. So we still generate
bitcasts in little-endian mode, and even in big-endian when you're
casting between two vector types with the same lane size.

For testing, I've moved all the codegen tests of vreinterpretq out
into their own file, so that they can have a different set of RUN
lines to check both big- and little-endian.

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D73786
2020-02-03 11:20:06 +00:00
Simon Tatham 902e84556a [ARM,MVE] Add intrinsics for 'administrative' vector operations.
This batch of intrinsics includes lots of things that move vector data
around or change its type without really affecting its value very
much. It includes the `vreinterpretq` family (cast one vector type to
another); `vuninitializedq` (create a vector of a given type with
don't-care contents); and `vcreateq` (make a 128-bit vector out of two
`uint64_t` halves).

These are all implemented using completely standard IR that's already
tested in existing LLVM unit tests, so I've just written a clang test
to check the IR is correct, and left it at that.

I've also added some richer infrastructure to the MveEmitter Tablegen
backend, to make it specify the exact integer type of integer
arguments passed to IR construction functions, and wrap those
arguments in a `static_cast` in the autogenerated C++. That was
necessary to prevent an overloading ambiguity when passing the integer
literal `0` to `IRBuilder::CreateInsertElement`, because otherwise, it
could mean either a null pointer `llvm::Value *` or a zero `uint64_t`.

Reviewers: ostannard, MarkMurrayARM, dmgreen

Subscribers: kristof.beyls, cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D70133
2019-11-15 09:53:43 +00:00