Currently, support for the x32 ABI is handled as a multilib to the
x86_64 target only. However, full self-hosting x32 systems treating it
as a separate architecture with its own architecture triplets as well as
search paths exist as well, in Debian's x32 port and elsewhere.
This adds the missing architecture triplets and search paths so that
clang can work as a native compiler on x32, and updates the tests so
that they pass when using an x32 libdir suffix.
Additionally, we would previously also assume that objects from any
x86_64-linux-gnu GCC installation could be used to target x32. This
changes the logic so that only GCC installations that include x32
support are used when targetting x32, meaning x86_64-linux-gnux32 GCC
installations, and x86_64-linux-gnu and i686-linux-gnu GCC installations
that include x32 multilib support.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D52050
directory for programs used by the driver is actually the standard
behavior we want to be compatible with GCC cross compilers -- it isn't
specific to SUSE or any other distro.
Also start fleshing out testing of the different cross compilation
patterns, both with a new very bare-bones tree of cross compilers and by
extending the multilib trees. Currently, we don't correctly model doing
a cross compile using the non-triple target of a bi-arch GCC install,
but I'll add support for that (and tests) next.
llvm-svn: 184499
enabled for debian hosts, which is quite odd. I think all restriction on
when Clang attempts to use a multilib installation should go away. Clang
is fundamentally a cross compiler. It behaves more like GCC when built
as a cross compiler, and so it should just use multilib installs when
they are present on the system. However, there is a very specific
exemption for Exherbo, which I can't test on, so I'm leaving that in
place.
With this, check in a generic test tree for multilib on a 32-bit host.
This stubs out many directories that most distributions don't use but
that uptsream GCC supports. This is intended to be an agnostic test that
the driver behaves properly compared with the GCC driver it aims for
compatibility with.
Also, fix a bug in the driver that this testing exposed (see!) where it
was incorrectly testing the target architecture rather than the host
architecture.
If anyone is having trouble with the tree-structure stubs I'm creating
to test this, let me know and I can revisit the design. I chose this
over (for example) a tar-ball in order to make tests run faster at the
small, hopefully amortized VCS cost.
llvm-svn: 140999