Memory sanitizer compatibility are already done in
MemorySanitizer::doInitialization. It verifies whether the necessary offsets
exist and bails out if not. For this reason it is no good to duplicate two
checks in two projects. This patch removes clang check and postpones msan
compatibility validation till MemorySanitizer::doInitialization.
Another reason for this patch is to allow using msan with any CPU (given
compatible runtime) and custom mapping provided via the arguments added by
https://reviews.llvm.org/D44926.
Patch by vit9696.
Differential Revision: https://reviews.llvm.org/D44927
llvm-svn: 329241
Summary: Porting HWASan to Linux x86-64, the third of the three patches, clang part.
Reviewers: eugenis
Subscribers: cryptoad, cfe-commits
Differential Revision: https://reviews.llvm.org/D44745
llvm-svn: 328361
This causes failures on buildbots:
/export/users/atombot/llvm/clang-atom-d525-fedora-rel/llvm/tools/clang/test/Driver/fsanitize.c:18:29: error: expected string not found in input
// CHECK-UNDEFINED-OPENBSD: "-fsanitize={{((signed-integer-overflow|integer-divide-by-zero|float-divide-by-zero|shift-base|shift-exponent|unreachable|return|vla-bound|alignment|null|pointer-overflow|float-cast-overflow|array-bounds|enum|bool|builtin|returns-nonnull-attribute|nonnull-attribute),?){18}"}}
^
<stdin>:1:1: note: scanning from here
clang version 7.0.0 (trunk 326648)
^
This will be investigated.
llvm-svn: 326652
This allows reporting an error when user tries to use SafeStack with
incompatible sanitizers.
Differential Revision: https://reviews.llvm.org/D43606
llvm-svn: 326151
r317337 missed that scudo is supported on MIPS32, so permit that option for
MIPS32.
Reviewers: cryptoad, atanasyan
Differential Revision: https://reviews.llvm.org/D42416
llvm-svn: 323412
Summary:
Enable the compile-time flag -fsanitize-memory-use-after-dtor by
default. Note that the run-time option MSAN_OPTIONS=poison_in_dtor=1
still needs to be enabled for destructors to be poisoned.
Reviewers: eugenis, vitalybuka, kcc
Reviewed By: eugenis, vitalybuka
Subscribers: cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D37860
llvm-svn: 322221
Summary:
This change adds Scudo as a possible Sanitizer option via -fsanitize=.
This allows for easier static & shared linking of the Scudo library, it allows
us to enforce PIE (otherwise the security of the allocator is moot), and check
for incompatible Sanitizers combo.
In its current form, Scudo is not compatible with any other Sanitizer, but the
plan is to make it work in conjunction with UBsan (-fsanitize=scudo,undefined),
which will require additional work outside of the scope of this change.
Reviewers: eugenis, kcc, alekseyshl
Reviewed By: eugenis, alekseyshl
Subscribers: llvm-commits, srhines
Differential Revision: https://reviews.llvm.org/D39334
llvm-svn: 317337
Summary:
This change allows generalizing pointers in type signatures used for
cfi-icall by enabling the -fsanitize-cfi-icall-generalize-pointers flag.
This works by 1) emitting an additional generalized type signature
metadata node for functions and 2) llvm.type.test()ing for the
generalized type for translation units with the flag specified.
This flag is incompatible with -fsanitize-cfi-cross-dso because it would
require emitting twice as many type hashes which would increase artifact
size.
Reviewers: pcc, eugenis
Reviewed By: pcc
Subscribers: kcc
Differential Revision: https://reviews.llvm.org/D39358
llvm-svn: 317044
Summary:
Also enable -no-pie on Gnu toolchain (previously available on Darwin only).
Non-PIE executables won't even start on recent Android, and DT_RPATH is ignored by the loader.
Reviewers: srhines, danalbert
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D38430
llvm-svn: 316606
Summary:
An implementation of ubsan runtime library suitable for use in production.
Minimal attack surface.
* No stack traces.
* Definitely no C++ demangling.
* No UBSAN_OPTIONS=log_file=/path (very suid-unfriendly). And no UBSAN_OPTIONS in general.
* as simple as possible
Minimal CPU and RAM overhead.
* Source locations unnecessary in the presence of (split) debug info.
* Values and types (as in A+B overflows T) can be reconstructed from register/stack dumps, once you know what type of error you are looking at.
* above two items save 3% binary size.
When UBSan is used with -ftrap-function=abort, sometimes it is hard to reason about failures. This library replaces abort with a slightly more informative message without much extra overhead. Since ubsan interface in not stable, this code must reside in compiler-rt.
Reviewers: pcc, kcc
Subscribers: srhines, mgorny, aprantl, krytarowski, llvm-commits
Differential Revision: https://reviews.llvm.org/D36810
llvm-svn: 312029
In r309007, I made -fsanitize=null a hard prerequisite for -fsanitize=vptr. I
did not see the need for the two checks to have separate null checking logic
for the same pointer. I expected the two checks to either always be enabled
together, or to be mutually compatible.
In the mailing list discussion re: r309007 it became clear that that isn't the
case. If a codebase is -fsanitize=vptr clean but not -fsanitize=null clean,
it's useful to have -fsanitize=vptr emit its own null check. That's what this
patch does: with it, -fsanitize=vptr can be used without -fsanitize=null.
Differential Revision: https://reviews.llvm.org/D36112
llvm-svn: 309846
On some targets, passing zero to the clz() or ctz() builtins has undefined
behavior. I ran into this issue while debugging UB in __hash_table from libcxx:
the bug I was seeing manifested itself differently under -O0 vs -Os, due to a
UB call to clz() (see: libcxx/r304617).
This patch introduces a check which can detect UB calls to builtins.
llvm.org/PR26979
Differential Revision: https://reviews.llvm.org/D34590
llvm-svn: 309459
The instrumentation generated by -fsanitize=vptr does not null check a
user pointer before loading from it. This causes crashes in the face of
UB member calls (this=nullptr), i.e it's causing user programs to crash
only after UBSan is turned on.
The fix is to make run-time null checking a prerequisite for enabling
-fsanitize=vptr, and to then teach UBSan to reuse these run-time null
checks to make -fsanitize=vptr safe.
Testing: check-clang, check-ubsan, a stage2 ubsan-enabled build
Differential Revision: https://reviews.llvm.org/D35735https://bugs.llvm.org/show_bug.cgi?id=33881
llvm-svn: 309007
This check currently isn't able to diagnose any issues at -O0, not is it
likely to [1]. Disabling the check at -O0 leads to substantial compile
time and binary size savings.
[1] [cfe-dev] Disabling ubsan's object size check at -O0
Differential Revision: https://reviews.llvm.org/D34563
llvm-svn: 306181
This commit adds a testcase for uncovered code paths in LSan options parsing logic in driver.
Differential Revision: https://reviews.llvm.org/D33941
llvm-svn: 304880
Check pointer arithmetic for overflow.
For some more background on this check, see:
https://wdtz.org/catching-pointer-overflow-bugs.htmlhttps://reviews.llvm.org/D20322
Patch by Will Dietz and John Regehr!
This version of the patch is different from the original in a few ways:
- It introduces the EmitCheckedInBoundsGEP utility which inserts
checks when the pointer overflow check is enabled.
- It does some constant-folding to reduce instrumentation overhead.
- It does not check some GEPs in CGExprCXX. I'm not sure that
inserting checks here, or in CGClass, would catch many bugs.
Possible future directions for this check:
- Introduce CGF.EmitCheckedStructGEP, to detect overflows when
accessing structures.
Testing: Apart from the added lit test, I ran check-llvm and check-clang
with a stage2, ubsan-instrumented clang. Will and John have also done
extensive testing on numerous open source projects.
Differential Revision: https://reviews.llvm.org/D33305
llvm-svn: 304459
This feature is subtly broken when the linker is gold 2.26 or
earlier. See the following bug for details:
https://sourceware.org/bugzilla/show_bug.cgi?id=19002
Since the decision needs to be made at compilation time, we can not
test the linker version. The flag is off by default on ELF targets,
and on otherwise.
llvm-svn: 302591
When enabling any sanitizer, -fsanitize-use-after-scope is enabled by
default. This doesn't actually turn ASan on, because we've been getting
lucky and there are extra checks in BackendUtil that stop this from
happening.
However, this has been causing a behavior change: extra lifetime markers
are emitted in some cases where they aren't needed or expected.
llvm-svn: 302468
Summary:
Support for leak sanitizer on darwin has been added to
compiler-rt, this patch adds compiler support.
Reviewers: dexonsmith, compnerd
Subscribers: alekseyshl, kubamracek, cfe-commits
Differential Revision: https://reviews.llvm.org/D32192
llvm-svn: 300894
Adding RUN lines with %clang_cl was causing these tests to fail on Mac
because absolute paths there tend to start with "/User/", which is
recognized as the "/U" flag.
Re-lands r300122
llvm-svn: 300209
Summary:
Use a tablegen let {} block so that new sanitizer flags are available by
default in all driver modes. This should cut down on time wasted with
bugs like http://crbug.com/710928.
Reviewers: vitalybuka, hans
Subscribers: kcc, llvm-commits
Differential Revision: https://reviews.llvm.org/D31988
llvm-svn: 300122
AddressSanitizer has an optional compile-time flag, -fsanitize-address-use-after-scope, which enables detection of use-after-scope bugs. We'd like to have this feature on by default, because it is already very well tested, it's used in several projects already (LLVM automatically enables it when using -DLLVM_USE_SANITIZER=Address), it's low overhead and there are no known issues or incompatibilities.
This patch enables use-after-scope by default via the Clang driver, where we set true as the default value for AsanUseAfterScope. This also causes the lifetime markers to be generated whenever fsanitize=address is used. This has some nice consequences, e.g. we now have line numbers for all local variables.
Differential Revision: https://reviews.llvm.org/D31479
llvm-svn: 299174
The PIC and PIE levels are not independent. In fact, if PIE is defined
it is always the same as PIC.
This is clear in the driver where ParsePICArgs returns a PIC level and
a IsPIE boolean. Unfortunately that is currently lost and we pass two
redundant levels down the pipeline.
This patch keeps a bool and a PIC level all the way down to codegen.
llvm-svn: 273566
Summary:
Adds a new -fsanitize=efficiency-working-set flag to enable esan's working
set tool. Adds appropriate tests for the new flag.
Reviewers: aizatsky
Subscribers: vitalybuka, zhaoqin, kcc, eugenis, llvm-commits
Differential Revision: http://reviews.llvm.org/D20484
llvm-svn: 270641
It makes compiler-rt tests fail if the gold plugin is enabled.
Revert "Rework interface for bitset-using features to use a notion of LTO visibility."
Revert "Driver: only produce CFI -fvisibility= error when compiling."
Revert "clang/test/CodeGenCXX/cfi-blacklist.cpp: Exclude ms targets. They would be non-cfi."
llvm-svn: 267871
The -fvisibility= flag only affects compile jobs, so there's no need to
error out because of it if we aren't compiling (e.g. if we are only linking).
llvm-svn: 267824
Bitsets, and the compiler features they rely on (vtable opt, CFI),
only have visibility within the LTO'd part of the linkage unit. Therefore,
only enable these features for classes with hidden LTO visibility. This
notion is based on object file visibility or (on Windows)
dllimport/dllexport attributes.
We provide the [[clang::lto_visibility_public]] attribute to override the
compiler's LTO visibility inference in cases where the class is defined
in the non-LTO'd part of the linkage unit, or where the ABI supports
calling classes derived from abstract base classes with hidden visibility
in other linkage units (e.g. COM on Windows).
If the cross-DSO CFI mode is enabled, bitset checks are emitted even for
classes with public LTO visibility, as that mode uses a separate mechanism
to cause bitsets to be exported.
This mechanism replaces the whole-program-vtables blacklist, so remove the
-fwhole-program-vtables-blacklist flag.
Because __declspec(uuid()) now implies [[clang::lto_visibility_public]], the
support for the special attr:uuid blacklist entry is removed.
Differential Revision: http://reviews.llvm.org/D18635
llvm-svn: 267784
Summary:
Adds a framework to enable the instrumentation pass for the new
EfficiencySanitizer ("esan") family of tools. Adds a flag for esan's
cache fragmentation tool via -fsanitize=efficiency-cache-frag.
Adds appropriate tests for the new flag.
Reviewers: eugenis, vitalybuka, aizatsky, filcab
Subscribers: filcab, kubabrecka, llvm-commits, zhaoqin, kcc
Differential Revision: http://reviews.llvm.org/D19169
llvm-svn: 267059
This is the clang part of http://reviews.llvm.org/D18846.
SafeStack instrumentation pass adds stack protector canaries if both
attributes are present on a function. StackProtector pass will step
back if the function has a safestack attribute.
llvm-svn: 266005
Update the clang driver to allow -fsanitize=thread when targeting x86_64 iOS and tvOS
simulators. Also restrict TSan targeting OS X to only be supported on x86_64 and not i386.
Differential Revision: http://reviews.llvm.org/D18280
llvm-svn: 263913
Summary:
I've got a patchset in my home directory to integrate support for
SafeStack into CloudABI's C library. All of the CloudABI unit tests
still seem to pass. Pretty sweet!
This change adds the necessary changes to Clang to make
-fsanitize=safe-stack work on CloudABI. Without it, passing this command
line flag throws an error.
Reviewers: eugenis, samsonov
Differential Revision: http://reviews.llvm.org/D17243
llvm-svn: 261135
This is part of a new statistics gathering feature for the sanitizers.
See clang/docs/SanitizerStats.rst for further info and docs.
Differential Revision: http://reviews.llvm.org/D16175
llvm-svn: 257971
Clang-side cross-DSO CFI.
* Adds a command line flag -f[no-]sanitize-cfi-cross-dso.
* Links a runtime library when enabled.
* Emits __cfi_slowpath calls is bitset test fails.
* Emits extra hash-based bitsets for external CFI checks.
* Sets a module flag to enable __cfi_check generation during LTO.
This mode does not yet support diagnostics.
llvm-svn: 255694
Since r249754 MemorySanitizer should work equally well for PIE and
non-PIE executables on Linux/x86_64.
Beware, with this change -fsanitize=memory no longer adds implicit
-fPIE -pie compiler/linker flags on Linux/x86_64.
This is a re-land of r250941, limited to Linux/x86_64 + a very minor
refactoring in SanitizerArgs.
llvm-svn: 250949
Since r249754 MemorySanitizer should work equally well for PIE and
non-PIE executables.
Beware, with this change -fsanitize=memory no longer adds implicit
-fPIE -pie compiler/linker flags, unless the target defaults to PIE.
llvm-svn: 250941
This flag causes the compiler to emit bit set entries for functions as well
as runtime bitset checks at indirect call sites. Depends on the new function
bitset mechanism.
Differential Revision: http://reviews.llvm.org/D11857
llvm-svn: 247238
There are known issues, but the current implementation is good enough for
the check-cfi test suite.
Differential Revision: http://reviews.llvm.org/D11030
llvm-svn: 241728
On Windows the user may invoke the linker directly, so we might not have an
opportunity to add runtime library flags to the linker command line. Instead,
instruct the code generator to embed linker directive in the object file
that cause the required runtime libraries to be linked.
We might also want to do something similar for ASan, but it seems to have
its own special complexities which may make this infeasible.
Differential Revision: http://reviews.llvm.org/D10862
llvm-svn: 241225
Summary:
Namely, we must have proper C++ABI support in UBSan runtime. We don't
have a good way to check for that, so just assume that C++ABI support is
there whenever -fsanitize=vptr is supported (i.e. only on handful of
platforms).
Exact diagnostic is also tricky. It's not "cfi" that is unsupported,
just the diagnostic mode. So, I suggest to report that
"-fno-sanitize-trap=cfi-foobar" is incompatible with a given target
toolchain.
Test Plan: regression test suite
Reviewers: pcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D10751
llvm-svn: 240716
Summary:
This is the Clang part of the PPC64 memory sanitizer implementation in
D10648.
Reviewers: kcc, eugenis, willschm, wschmidt, samsonov
Reviewed By: samsonov
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D10650
llvm-svn: 240628
Introduce ToolChain::getSupportedSanitizers() that would return the set
of sanitizers available on given toolchain. By default, these are
sanitizers which don't necessarily require runtime support and are
not toolchain- or architecture-dependent.
Sanitizers (ASan, DFSan, TSan, MSan etc.) which cannot function
without runtime library are marked as supported only on platforms
for which we actually build these runtimes.
This would allow more fine-grained checks in the future: for instance,
we have to restrict availability of -fsanitize=vptr to Mac OS 10.9+
(PR23539).
Update test cases accrodingly: add tests for certain unsupported
configurations, remove test cases for -fsanitize=vptr + PS4
integration, as we don't build the runtime for PS4 at the moment.
This change was first submitted as r239953 and reverted in r239958.
The problem was and still is in Darwin toolchains, which get the
knowledge about target platform too late after initializaition, while
now we require this information when ToolChain::getSanitizerArgs() is
called. r240170 works around this issue.
llvm-svn: 240179
Summary:
This is unfortunate, but would let us land http://reviews.llvm.org/D10467,
that makes ToolChains responsible for computing the set of sanitizers
they support.
Unfortunately, Darwin ToolChains doesn't know about actual OS they
target until ToolChain::TranslateArgs() is called. In particular, it
means we won't be able to construct SanitizerArgs for these ToolChains
before that.
This change removes SanitizerArgs::needsLTO() method, so that now
ToolChain::IsUsingLTO(), which is called very early, doesn't need
SanitizerArgs to implement this method.
Docs and test cases are updated accordingly. See
https://llvm.org/bugs/show_bug.cgi?id=23539, which describes why we
start all these.
Test Plan: regression test suite
Reviewers: pcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D10560
llvm-svn: 240170
This patch adds initial support for the -fsanitize=kernel-address flag to Clang.
Right now it's quite restricted: only out-of-line instrumentation is supported, globals are not instrumented, some GCC kasan flags are not supported.
Using this patch I am able to build and boot the KASan tree with LLVMLinux patches from github.com/ramosian-glider/kasan/tree/kasan_llvmlinux.
To disable KASan instrumentation for a certain function attribute((no_sanitize("kernel-address"))) can be used.
llvm-svn: 240131
This flag controls whether a given sanitizer traps upon detecting
an error. It currently only supports UBSan. The existing flag
-fsanitize-undefined-trap-on-error has been made an alias of
-fsanitize-trap=undefined.
This change also cleans up some awkward behavior around the combination
of -fsanitize-trap=undefined and -fsanitize=undefined. Previously we
would reject command lines containing the combination of these two flags,
as -fsanitize=vptr is not compatible with trapping. This required the
creation of -fsanitize=undefined-trap, which excluded -fsanitize=vptr
(and -fsanitize=function, but this seems like an oversight).
Now, -fsanitize=undefined is an alias for -fsanitize=undefined-trap,
and if -fsanitize-trap=undefined is specified, we treat -fsanitize=vptr
as an "unsupported" flag, which means that we error out if the flag is
specified explicitly, but implicitly disable it if the flag was implied
by -fsanitize=undefined.
Differential Revision: http://reviews.llvm.org/D10464
llvm-svn: 240105
Summary:
Introduce ToolChain::getSupportedSanitizers() that would return the set
of sanitizers available on given toolchain. By default, these are
sanitizers which don't necessarily require runtime support (i.e.
set from -fsanitize=undefined-trap).
Sanitizers (ASan, DFSan, TSan, MSan etc.) which cannot function
without runtime library are marked as supported only on platforms
for which we actually build these runtimes.
This would allow more fine-grained checks in the future: for instance,
we have to restrict availability of -fsanitize=vptr to Mac OS 10.9+
(PR23539)
Update test cases accrodingly: add tests for certain unsupported
configurations, remove test cases for -fsanitize=vptr + PS4
integration, as we don't build the runtime for PS4 at the moment.
Test Plan: regression test suite
Reviewers: pcc
Subscribers: cfe-commits, filcab, eugenis, thakis, kubabrecka, emaste, rsmith
Differential Revision: http://reviews.llvm.org/D10467
llvm-svn: 239953
This patch adds the -fsanitize=safe-stack command line argument for clang,
which enables the Safe Stack protection (see http://reviews.llvm.org/D6094
for the detailed description of the Safe Stack).
This patch is our implementation of the safe stack on top of Clang. The
patches make the following changes:
- Add -fsanitize=safe-stack and -fno-sanitize=safe-stack options to clang
to control safe stack usage (the safe stack is disabled by default).
- Add __attribute__((no_sanitize("safe-stack"))) attribute to clang that can be
used to disable the safe stack for individual functions even when enabled
globally.
Original patch by Volodymyr Kuznetsov and others at the Dependable Systems
Lab at EPFL; updates and upstreaming by myself.
Differential Revision: http://reviews.llvm.org/D6095
llvm-svn: 239762
Don't print unused-argument warning for sanitizer-specific feature flag
if this sanitizer was eanbled, and later disabled in the command line.
For example, now:
clang -fsanitize=address -fsanitize-coverage=bb -fno-sanitize=address a.cc
doesn't print warning, but
clang -fsanitize-coverage=bb
does. Same holds for -fsanitize-address-field-padding= and
-fsanitize-memory-track-origins= flags.
Fixes PR23604.
llvm-svn: 237870
Summary:
The next step is to add user-friendly control over these options
to driver via -fsanitize-coverage= option.
Test Plan: regression test suite
Reviewers: kcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D9545
llvm-svn: 236756
Embed UBSan runtime into TSan and MSan runtimes in the same as we do
in ASan. Extend UBSan test suite to also run tests for these
combinations.
llvm-svn: 235953
This uses the same class metadata currently used for virtual call and
cast checks.
The new flag is -fsanitize=cfi-nvcall. For consistency, the -fsanitize=cfi-vptr
flag has been renamed -fsanitize=cfi-vcall.
Differential Revision: http://reviews.llvm.org/D8756
llvm-svn: 233874
We are not able to make a reliable solution for using UBSan together
with other sanitizers with runtime support (and sanitizer_common).
Instead, we want to follow the path used for LSan: have a "standalone"
UBSan tool, and plug-in UBSan that would be explicitly embedded into
specific sanitizers (in short term, it will be only ASan).
llvm-svn: 232829
This scheme checks that pointer and lvalue casts are made to an object of
the correct dynamic type; that is, the dynamic type of the object must be
a derived class of the pointee type of the cast. The checks are currently
only introduced where the class being casted to is a polymorphic class.
Differential Revision: http://reviews.llvm.org/D8312
llvm-svn: 232241
This is a recommit of r231150, reverted in r231409. Turns out
that -fsanitize=shift-base check implementation only works if the
shift exponent is valid, otherwise it contains undefined behavior
itself.
Make sure we check that exponent is valid before we proceed to
check the base. Make sure that we actually report invalid values
of base or exponent if -fsanitize=shift-base or
-fsanitize=shift-exponent is specified, respectively.
llvm-svn: 231711
It's not that easy. If we're only checking -fsanitize=shift-base we
still need to verify that exponent has sane value, otherwise
UBSan-inserted checks for base will contain undefined behavior
themselves.
llvm-svn: 231409
-fsanitize=shift is now a group that includes both these checks, so
exisiting users should not be affected.
This change introduces two new UBSan kinds that sanitize only left-hand
side and right-hand side of shift operation. In practice, invalid
exponent value (negative or too large) tends to cause more portability
problems, including inconsistencies between different compilers, crashes
and inadequeate results on non-x86 architectures etc. That is,
-fsanitize=shift-exponent failures should generally be addressed first.
As a bonus, this change simplifies CodeGen implementation for emitting left
shift (separate checks for base and exponent are now merged by the
existing generic logic in EmitCheck()), and LLVM IR for these checks
(the number of basic blocks is reduced).
llvm-svn: 231150
Change -fsanitize-memory-track-origins to be equivalent to
-fsanitize-memory-track-origins=2.
Track-origins=2 provides a lot more detailed reports at the cost of
some additional slowdown (ranging from none to, sometimes, 3x; ~3% average on
SPEC2006).
llvm-svn: 230644
This patch introduces the -fsanitize=cfi-vptr flag, which enables a control
flow integrity scheme that checks that virtual calls take place using a vptr of
the correct dynamic type. More details in the new docs/ControlFlowIntegrity.rst
file.
It also introduces the -fsanitize=cfi flag, which is currently a synonym for
-fsanitize=cfi-vptr, but will eventually cover all CFI checks implemented
in Clang.
Differential Revision: http://reviews.llvm.org/D7424
llvm-svn: 230055
This patch removes the huge blob of code that is dealing with
rtti/exceptions/sanitizers and replaces it with:
A ToolChain function which, for a given set of Args, figures out if rtti
should be:
- enabled
- disabled implicitly
- disabled explicitly
A change in the way SanitizerArgs figures out what sanitizers to enable
(or if it should error out, or warn);
And a check for exceptions/rtti interaction inside addExceptionArgs.
The RTTIMode algorithm is:
- If -mkernel, -fapple-kext, or -fno-rtti are passed, rtti was disabled explicitly;
- If -frtti was passed or we're not targetting the PS4, rtti is enabled;
- If -fexceptions or -fcxx-exceptions was passed and we're targetting
the PS4, rtti was enabled implicitly;
- If we're targetting the PS4, rtti is disabled implicitly;
- Otherwise, rtti is enabled;
Since the only flag needed to pass to -cc1 is -fno-rtti if we want to
disable it, there's no problem in saying rtti is enabled if we're
compiling C code, so we don't look at the input file type.
addExceptionArgs now looks at the RTTIMode and warns that rtti is being
enabled implicitly if targetting the PS4 and exceptions are on. It also
errors out if, targetting the PS4, -fno-rtti was passed, and exceptions
were turned on.
SanitizerArgs now errors out if rtti was disabled explicitly and the vptr
sanitizer was enabled implicitly, but just turns off vptr if rtti is
disabled but -fsanitize=undefined was passed.
Also fixed tests, removed duplicate name from addExceptionArgs comment,
and added one or two surrounding lines when running clang-format.
This changes test/Driver/fsanitize.c to make it not expect a warning when
passed -fsanitize=undefined -fno-rtti, but expect vptr to not be on.
Removed all users and definition of SanitizerArgs::sanitizesVptr().
Reviewers: samsonov
Subscribers: llvm-commits, samsonov, rsmith
Differential Revision: http://reviews.llvm.org/D7525
llvm-svn: 229801
Introduce the following -fsanitize-recover flags:
- -fsanitize-recover=<list>: Enable recovery for selected checks or
group of checks. It is forbidden to explicitly list unrecoverable
sanitizers here (that is, "address", "unreachable", "return").
- -fno-sanitize-recover=<list>: Disable recovery for selected checks or
group of checks.
- -f(no-)?sanitize-recover is now a synonym for
-f(no-)?sanitize-recover=undefined,integer and will soon be deprecated.
These flags are parsed left to right, and mask of "recoverable"
sanitizer is updated accordingly, much like what we do for -fsanitize= flags.
-fsanitize= and -fsanitize-recover= flag families are independent.
CodeGen change: If there is a single UBSan handler function, responsible
for implementing multiple checks, which have different recoverable setting,
then we emit two handler calls instead of one:
the first one for the set of "unrecoverable" checks, another one - for
set of "recoverable" checks. If all checks implemented by a handler have the
same recoverability setting, then the generated code will be the same.
llvm-svn: 225719
Summary:
Allow -fsanitize-coverage=N with ubsan, clang part.
This simply allows the flag combination.
The LLVM will work out of the box, the compile-rt part
will follow as a separate patch.
Test Plan: check-clang
Reviewers: samsonov
Reviewed By: samsonov
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D6849
llvm-svn: 225229
Summary:
This patch adds "all" sanitizer group. A shortcut "-fno-sanitize=all"
can be used to disable all sanitizers for a given source file.
"-fsanitize=all" option makes no sense, and will produce an error.
This group can also be useful when we add "-fsanitize-recover=<list>"
options (patch in http://reviews.llvm.org/D6302), as it would allow
to conveniently enable/disable recovery for all specified sanitizers.
Test Plan: regression test suite
Reviewers: kcc, rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D6733
llvm-svn: 224596