Currently we don't lock ScopedErrorReportLock around fork
and it mostly works becuase tsan has own report_mtx that
is locked around fork and tsan reports.
However, sanitizer_common code prints some own reports
which are not protected by tsan's report_mtx. So it's better
to lock ScopedErrorReportLock explicitly.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D106048
InternalScopedString uses InternalMmapVector internally
so it can be resized dynamically as needed.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D98751
Adds a check to avoid symbolization when printing stack traces if the
stack_trace_format flag does not need it. While there is a symbolize
flag that can be turned off to skip some of the symbolization,
SymbolizePC() still unconditionally looks up the module name and offset.
Avoid invoking SymbolizePC() at all if not needed.
This is an efficiency improvement when dumping all stack traces as part
of the memory profiler in D87120, for large stripped apps where we want
to symbolize as a post pass.
Differential Revision: https://reviews.llvm.org/D88361
Updated: Removed offending TODO comment.
Dereferences with addresses above the 48-bit hardware addressable range
produce "invalid instruction" (instead of "invalid access") hardware
exceptions (there is no hardware address decoding logic for those bits),
and the address provided by this exception is the address of the
instruction (not the faulting address). The kernel maps the "invalid
instruction" to SEGV, but fails to provide the real fault address.
Because of this ASan lies and says that those cases are null
dereferences. This downgrades the severity of a found bug in terms of
security. In the ASan signal handler, we can not provide the real
faulting address, but at least we can try not to lie.
rdar://50366151
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D68676
> llvm-svn: 374265
llvm-svn: 374384
Dereferences with addresses above the 48-bit hardware addressable range
produce "invalid instruction" (instead of "invalid access") hardware
exceptions (there is no hardware address decoding logic for those bits),
and the address provided by this exception is the address of the
instruction (not the faulting address). The kernel maps the "invalid
instruction" to SEGV, but fails to provide the real fault address.
Because of this ASan lies and says that those cases are null
dereferences. This downgrades the severity of a found bug in terms of
security. In the ASan signal handler, we can not provide the real
faulting address, but at least we can try not to lie.
rdar://50366151
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D68676
llvm-svn: 374265
See https://reviews.llvm.org/D58620 for discussion, and for the commands
I ran. In addition I also ran
for f in $(svn diff | diffstat | grep .cc | cut -f 2 -d ' '); do rg $f . ; done
and manually updated (many) references to renamed files found by that.
llvm-svn: 367463