This resolves an issue tripping a `DCHECK`, as I was checking for the
capacity and not the size. We don't need to 0-init the Vector as it's
done already, and make sure we only 0-out the string on clear if it's
not empty.
Differential Revision: https://reviews.llvm.org/D103716
prepareTaggedChunk uses Tag 0 for header.
Android already PR_MTE_TAG_MASK to 0xfffe,
but with the patch we will not need to deppend
on the system configuration.
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D103134
Some platforms (eg: Trusty) are extremelly memory constrained, which
doesn't necessarily work well with some of Scudo's current assumptions.
`Vector` by default (and as such `String` and `ScopedString`) maps a
page, which is a bit of a waste. This CL changes `Vector` to use a
buffer local to the class first, then potentially map more memory if
needed (`ScopedString` currently are all stack based so it would be
stack data). We also want to allow a platform to prevent any dynamic
resizing, so I added a `CanGrow` templated parameter that for now is
always `true` but would be set to `false` on Trusty.
Differential Revision: https://reviews.llvm.org/D103641
This moves the implementations for HandleTagMismatch, __hwasan_tag_mismatch4,
and HwasanAtExit from hwasan_linux.cpp to hwasan.cpp and declares them in hwasan.h.
This way, calls to those functions can be shared with the fuchsia implementation
without duplicating code.
Differential Revision: https://reviews.llvm.org/D103562
WrapperFunctionResult is a C++ wrapper for __orc_rt_CWrapperFunctionResult
that automatically manages the underlying struct.
The Simple Packed Serialization (SPS) utilities support a simple serialization
scheme for wrapper function argument and result buffers:
Primitive typess (bool, char, int8_t, and uint8_t, int16_t, uint16_t, int32_t,
uint32_t, int64_t, uint64_t) are serialized in little-endian form.
SPSTuples are serialized by serializing each of the tuple members in order
without padding.
SPSSequences are serialized by serializing a sequence length (as a uint64_t)
followed by each of the elements of the sequence in order without padding.
Serialization/deserialization always involves a pair of SPS type tag (a tag
representing the serialized format to use, e.g. uint32_t, or
SPSTuple<bool, SPSString>) and a concrete type to be serialized from or
deserialized to (uint32_t, std::pair<bool, std::string>). Serialization for new
types can be implemented by specializing the SPSSerializationTraits type.
When toolchain can supports all of arm, armhf and armv6m architectures compiler-rt
libraries won't compile because architecture specific flags are appended to single
BUILTIN_CFLAGS variable.
Differential revision: https://reviews.llvm.org/D103363
OrcRTCWrapperFunctionResult is a C struct that can be used to return serialized
results from "wrapper functions" -- functions that deserialize an argument
buffer, call through to an actual implementation function, then serialize and
return the result of that function. Wrapper functions allow calls between ORC
and the ORC Runtime to be written using a single signature,
WrapperFunctionResult(const char *ArgData, size_t ArgSize), and without coupling
either side to a particular transport mechanism (in-memory, TCP, IPC, ... the
actual mechanism will be determined by the TargetProcessControl implementation).
OrcRTCWrapperFunctionResult is designed to allow small serialized buffers to
be returned by value, with larger serialized results stored on the heap. They
also provide an error state to report failures in serialization/deserialization.
This change introduces libMutagen/libclang_rt.mutagen.a as a subset of libFuzzer/libclang_rt.fuzzer.a. This library contains only the fuzzing strategies used by libFuzzer to produce new test inputs from provided inputs, dictionaries, and SanitizerCoverage feedback.
Most of this change is simply moving sections of code to one side or the other of the library boundary. The only meaningful new code is:
* The Mutagen.h interface and its implementation in Mutagen.cpp.
* The following methods in MutagenDispatcher.cpp:
* UseCmp
* UseMemmem
* SetCustomMutator
* SetCustomCrossOver
* LateInitialize (similar to the MutationDispatcher's original constructor)
* Mutate_AddWordFromTORC (uses callbacks instead of accessing TPC directly)
* StartMutationSequence
* MutationSequence
* DictionaryEntrySequence
* RecommendDictionary
* RecommendDictionaryEntry
* FuzzerMutate.cpp (which now justs sets callbacks and handles printing)
* MutagenUnittest.cpp (which adds tests of Mutagen.h)
A note on performance: This change was tested with a 100 passes of test/fuzzer/LargeTest.cpp with 1000 runs per pass, both with and without the change. The running time distribution was qualitatively similar both with and without the change, and the average difference was within 30 microseconds (2.240 ms/run vs 2.212 ms/run, respectively). Both times were much higher than observed with the fully optimized system clang (~0.38 ms/run), most likely due to the combination of CMake "dev mode" settings (e.g. CMAKE_BUILD_TYPE="Debug", LLVM_ENABLE_LTO=OFF, etc.). The difference between the two versions built similarly seems to be "in the noise" and suggests no meaningful performance degradation.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D102447
This reverts commit 6911114d8c.
Broke the QEMU sanitizer bots due to a missing header dependency. This
actually needs to be fixed on the bot-side, but for now reverting this
patch until I can fix up the bot.
This patch moves -fsanitize=scudo to link the standalone scudo library,
rather than the original compiler-rt based library. This is one of the
major remaining roadblocks to deleting the compiler-rt based scudo,
which should not be used any more. The standalone Scudo is better in
pretty much every way and is much more suitable for production usage.
As well as patching the litmus tests for checking that the
scudo_standalone lib is linked instead of the scudo lib, this patch also
ports all the scudo lit tests to run under scudo standalone.
This patch also adds a feature to scudo standalone that was under test
in the original scudo - that arguments passed to an aligned operator new
were checked that the alignment was a power of two.
Some lit tests could not be migrated, due to the following issues:
1. Features that aren't supported in scudo standalone, like the rss
limit.
2. Different quarantine implementation where the test needs some more
thought.
3. Small bugs in scudo standalone that should probably be fixed, like
the Secondary allocator having a full page on the LHS of an allocation
that only contains the chunk header, so underflows by <= a page aren't
caught.
4. Slight differences in behaviour that's technically correct, like
'realloc(malloc(1), 0)' returns nullptr in standalone, but a real
pointer in old scudo.
5. Some tests that might be migratable, but not easily.
Tests that are obviously not applicable to scudo standalone (like
testing that no sanitizer symbols made it into the DSO) have been
deleted.
After this patch, the remaining work is:
1. Update the Scudo documentation. The flags have changed, etc.
2. Delete the old version of scudo.
3. Patch up the tests in lit-unmigrated, or fix Scudo standalone.
Reviewed By: cryptoad, vitalybuka
Differential Revision: https://reviews.llvm.org/D102543
Now that everything is forcibly linker initialized, it feels like a
good time to get rid of the `init`/`initLinkerInitialized` split.
This allows to get rid of various `memset` construct in `init` that
gcc complains about (this fixes a Fuchsia open issue).
I added various `DCHECK`s to ensure that we would get a zero-inited
object when entering `init`, which required ensuring that
`unmapTestOnly` leaves the object in a good state (tests are currently
the only location where an allocator can be "de-initialized").
Running the tests with `--gtest_repeat=` showed no issue.
Differential Revision: https://reviews.llvm.org/D103119
The generic approach can still be used by musl and FreeBSD. Note: on glibc
2.31, TLS_PRE_TCB_SIZE is 0x700, larger than ThreadDescriptorSize() by 16, but
this is benign: as long as the range includes pthread::{specific_1stblock,specific}
pthread_setspecific will not cause false positives.
Note: the state before afec953857 underestimated
the TLS size a lot (nearly ThreadDescriptorSize() = 1776).
That may explain why afec953857 actually made some
tests pass.
When building with Clang 11 on Windows, silence the following:
[432/5643] Building C object projects\compiler-rt\lib\profile\CMakeFiles\clang_rt.profile-x86_64.dir\GCDAProfiling.c.obj
F:\aganea\llvm-project\compiler-rt\lib\profile\GCDAProfiling.c(464,13): warning: comparison of integers of different signs: 'uint32_t' (aka 'unsigned int') and 'int' [-Wsign-compare]
if (val != (gcov_version >= 90 ? GCOV_TAG_OBJECT_SUMMARY
~~~ ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1 warning generated.
Cast of signed types to u64 breaks comparison.
Also remove double () around operands.
Reviewed By: cryptoad, hctim
Differential Revision: https://reviews.llvm.org/D103060
Make sure that if SCUDO_DEBUG=1 in tests
then we had the same in the scudo
library itself.
Reviewed By: cryptoad, hctim
Differential Revision: https://reviews.llvm.org/D103061
Said function had a few shortfalls:
- didn't set an abort message on Android
- was logged on several lines
- didn't provide extra information like the size requested if OOM'ing
This improves the function to address those points.
Differential Revision: https://reviews.llvm.org/D103034
When trying to track down a vaddr-poisoning bug, I found that that the
secondary cache isn't emptied on test teardown. We should probably do
that to make the tests hermetic. Otherwise, repeating the tests lots of
times using --gtest_repeat fails after the mmap vaddr space is
exhausted.
To repro:
$ ninja check-scudo_standalone # build
$ ./projects/compiler-rt/lib/scudo/standalone/tests/ScudoUnitTest-x86_64-Test \
--gtest_filter=ScudoSecondaryTest.*:-ScudoSecondaryTest.SecondaryCombinations \
--gtest_repeat=10000
Reviewed By: cryptoad
Differential Revision: https://reviews.llvm.org/D102874
Fix buildbot failure
https://lab.llvm.org/buildbot/#/builders/57/builds/6542/steps/6/logs/stdio
/llvm-project/llvm/utils/unittest/googletest/include/gtest/gtest.h:1629:28:
error: comparison of integers of different signs: 'const unsigned long'
and 'const int' [-Werror,-Wsign-compare]
GTEST_IMPL_CMP_HELPER_(GT, >);
~~~~~~~~~~~~~~~~~~~~~~~~~~^~
/llvm-project/llvm/utils/unittest/googletest/include/gtest/gtest.h:1609:12:
note: expanded from macro 'GTEST_IMPL_CMP_HELPER_'
if (val1 op val2) {\
~~~~ ^ ~~~~
/llvm-project/compiler-rt/lib/scudo/standalone/tests/common_test.cpp:30:3:
note: in instantiation of function template specialization
'testing::internal::CmpHelperGT<unsigned long, int>' requested here
EXPECT_GT(OnStart, 0);
^
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D103029
The Fuchsia allocator config was using the default size class map.
This CL gives Fuchsia its own size class map and changes a couple of
things in the default one:
- make `SizeDelta` configurable in `Config` for a fixed size class map
as it currently is for a table size class map;
- switch `SizeDelta` to 0 for the default config, it allows for size
classes that allow for power of 2s, and overall better wrt pages
filling;
- increase the max number of caches pointers to 14 in the default,
this makes the transfer batch 64/128 bytes on 32/64-bit platforms,
which is cache-line friendly (previous size was 48/96 bytes).
The Fuchsia size class map remains untouched for now, this doesn't
impact Android which uses the table size class map.
Differential Revision: https://reviews.llvm.org/D102783
This method is like StackTrace::Print but instead of printing to stderr
it copies its output to a user-provided buffer.
Part of https://reviews.llvm.org/D102451.
Reviewed By: vitalybuka, stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D102815
Put allocate/deallocate next to memory
access inside EXPECT_DEATH block.
This way we reduce probability that memory is not mapped
by unrelated code.
It's still not absolutely guaranty that mmap does not
happen so we repeat it few times to be sure.
Reviewed By: cryptoad
Differential Revision: https://reviews.llvm.org/D102886
Looks like secondary pointers don't get unmapped on one of the arm32
bots. In the interests of landing some dependent patches, disable this
test on arm32 so that it can be tested in isolation later.
Reviewed By: cryptoad, vitalybuka
Split from differential patchset (1/2): https://reviews.llvm.org/D102648
The Linux kernel has removed the interface to cyclades from
the latest kernel headers[1] due to them being orphaned for the
past 13 years.
libsanitizer uses this header when compiling against glibc, but
glibcs itself doesn't seem to have any references to cyclades.
Further more it seems that the driver is broken in the kernel and
the firmware doesn't seem to be available anymore.
As such since this is breaking the build of libsanitizer (and so the
GCC bootstrap[2]) I propose to remove this.
[1] https://lkml.org/lkml/2021/3/2/153
[2] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100379
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D102059
The Linux kernel has removed the interface to cyclades from
the latest kernel headers[1] due to them being orphaned for the
past 13 years.
libsanitizer uses this header when compiling against glibc, but
glibcs itself doesn't seem to have any references to cyclades.
Further more it seems that the driver is broken in the kernel and
the firmware doesn't seem to be available anymore.
As such since this is breaking the build of libsanitizer (and so the
GCC bootstrap[2]) I propose to remove this.
[1] https://lkml.org/lkml/2021/3/2/153
[2] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100379
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D102059
These will be used for error propagation and handling in the ORC runtime.
The implementations of these types are cut-down versions of the error
support in llvm/Support/Error.h. Most advice on llvm::Error and llvm::Expected
(e.g. from the LLVM Programmer's manual) applies equally to __orc_rt::Error
and __orc_rt::Expected. The primary difference is the mechanism for testing
and handling error types: The ORC runtime uses a new 'error_cast' operation
to replace the handleErrors family of functions. See error_cast comments in
error.h.
If there are no counters, an mmap() of the counters section would fail
due to the size argument being too small (EINVAL).
rdar://78175925
Differential Revision: https://reviews.llvm.org/D102735
While developing a change to the allocator I ended up breaking
realloc on secondary allocations with increasing sizes. That didn't
cause any of the unit tests to fail, which indicated that we're
missing some test coverage here. Add a unit test for that case.
Differential Revision: https://reviews.llvm.org/D102716
This is a substitute for std::apply, which we can't use until we move to c++17.
apply_tuple will be used in upcoming the upcoming wrapper-function utils code.
Override __cxa_atexit and ignore callbacks.
This prevents crashes in a configuration when the symbolizer
is built into sanitizer runtime and consequently into the test process.
LLVM libraries have some global objects destroyed during exit,
so if the test process triggers any bugs after that, the symbolizer crashes.
An example stack trace of such crash:
For the standalone llvm-symbolizer this does not hurt,
we just don't destroy few global objects on exit.
Reviewed By: kda
Differential Revision: https://reviews.llvm.org/D102470
Since we have both aliasing mode and Intel LAM on x86_64, we need to
choose the mode at either run time or compile time. This patch
implements the plumbing to build both and choose between them at
compile time.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D102286
On AIX, we have to ship `libatomic.a` for compatibility. First, a new `clang_rt.atomic` is added. Second, use added cmake modules for AIX, we are able to build a compatible libatomic.a for AIX. The second step can't be perfectly implemented with cmake now since AIX's archive approach is kinda unique, i.e., archiving shared libraries into a static archive file.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D102155
`-fno-exceptions -fno-asynchronous-unwind-tables` compiled programs don't
produce .eh_frame on Linux and other ELF platforms, so the slow unwinder cannot
print stack traces. Just fall back to the fast unwinder: this allows
-fno-asynchronous-unwind-tables without requiring the sanitizer option
`fast_unwind_on_fatal=1`
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D102046
This removes one of the last dependencies on old Scudo, and should allow
us to delete the old Scudo soon.
Reviewed By: vitalybuka, cryptoad
Differential Revision: https://reviews.llvm.org/D102349
With zero-sized allocations we don't actually end up storing the
address tag to the memory tag space, so store it in the first byte of
the chunk instead so that we can find it later in getInlineErrorInfo().
Differential Revision: https://reviews.llvm.org/D102442
It's more likely that we have a UAF than an OOB in blocks that are
more than 1 block away from the fault address, so the UAF should
appear first in the error report.
Differential Revision: https://reviews.llvm.org/D102379
On x32 size_t == unsigned int, not unsigned long int:
../../../../../src-master/libsanitizer/sanitizer_common/sanitizer_linux_libcdep.cpp: In function ??void __sanitizer::InitTlsSize()??:
../../../../../src-master/libsanitizer/sanitizer_common/sanitizer_linux_libcdep.cpp:209:55: error: invalid conversion from ??__sanitizer::uptr*?? {aka ??long unsigned int*??} to ??size_t*?? {aka ??unsigned int*??} [-fpermissive]
209 | ((void (*)(size_t *, size_t *))get_tls_static_info)(&g_tls_size, &tls_align);
| ^~~~~~~~~~~
| |
| __sanitizer::uptr* {aka long unsigned int*}
by using size_t on g_tls_size. This is to fix:
https://bugs.llvm.org/show_bug.cgi?id=50332
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D102446
The bounds check that we previously had here was suitable for secondary
allocations but not for UAF on primary allocations, where it is likely
to result in false positives. Fix it by using a different bounds check
for UAF that requires the fault address to be in bounds.
Differential Revision: https://reviews.llvm.org/D102376
We have some significant amount of duplication around
CheckFailed functionality. Each sanitizer copy-pasted
a chunk of code. Some got random improvements like
dealing with recursive failures better. These improvements
could benefit all sanitizers, but they don't.
Deduplicate CheckFailed logic across sanitizers and let each
sanitizer only print the current stack trace.
I've tried to dedup stack printing as well,
but this got me into cmake hell. So let's keep this part
duplicated in each sanitizer for now.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D102221
setlocale interceptor imitates a write into result,
which may be located in .rodata section.
This is the only interceptor that tries to do this and
I think the intention was to initialize the range for msan.
So do that instead. Writing into .rodata shouldn't happen
(without crashing later on the actual write) and this
traps on my local tsan experiments.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D102161
Currently we have:
sanitizer_posix_libcdep.cpp:146:27: warning: cast between incompatible
function types from ‘__sighandler_t’ {aka ‘void (*)(int)’} to ‘sa_sigaction_t’
146 | sigact.sa_sigaction = (sa_sigaction_t)SIG_DFL;
We don't set SA_SIGINFO, so we need to assign to sa_handler.
And SIG_DFL is meant for sa_handler, so this gets rid of both
compiler warning, type cast and potential runtime misbehavior.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D102162
Add unit test infrastructure for the ORC runtime, plus a cut-down
extensible_rtti system and extensible_rtti unit test.
Removes the placeholder.cpp source file.
Differential Revision: https://reviews.llvm.org/D102080
This patch does a few cleanup things:
1. The non-standalone scudo has a problem where GWP-ASan allocations
may not meet alignment requirements where Scudo was requested to have
alignment >= 16. Use the new GWP-ASan API to fix this.
2. The standalone variant loses some debugging information inside of
GWP-ASan because we ask GWP-ASan to allocate an aligned size in the
frontend. This means reports end up with 'UaF on a 16-byte allocation'
for a 1-byte allocation with 16-byte alignment. Also use the new API to
fix this.
3. Add post-alloc hooks for GWP-ASan intercepted allocations, and add
stats tracking for GWP-ASan allocations.
4. Add a small test that checks the alignment of the frontend
allocator, so that it can be used under GWP-ASan torture mode.
5. Add GWP-ASan torture mode as a testing configuration to catch these
regressions.
Depends on D94830, D95889.
Reviewed By: cryptoad
Differential Revision: https://reviews.llvm.org/D95884
GWP-ASan is the "production" variant as compiled by compiler-rt, and it's useful to be able to benchmark changes in GWP-ASan or Scudo's GWP-ASan hooks across versions. GWP-ASan is sampled, and sampled allocations are much slower, but given the amount of allocations that happen under test here - we actually get a reasonable representation of GWP-ASan's negligent performance impact between runs.
Reviewed By: cryptoad
Differential Revision: https://reviews.llvm.org/D101865
According to:
https://docs.python.org/3/library/subprocess.html#subprocess.Popen.poll
poll can return None if the process hasn't terminated.
I'm not quite sure how addr2line could end up closing the pipe without
terminating but we did see this happen on one of our bots:
```
<...>scripts/asan_symbolize.py",
line 211, in symbolize
logging.debug("addr2line exited early (broken pipe), returncode=%d"
% self.pipe.poll())
TypeError: %d format: a number is required, not NoneType
```
Handle None by printing a message that we couldn't get the return
code.
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D101891
Address sanitizer can detect stack exhaustion via its SEGV handler, which is
executed on a separate stack using the sigaltstack mechanism. When libFuzzer is
used with address sanitizer, it installs its own signal handlers which defer to
those put in place by the sanitizer before performing additional actions. In the
particular case of a stack overflow, the current setup fails because libFuzzer
doesn't preserve the flag for executing the signal handler on a separate stack:
when we run out of stack space, the operating system can't run the SEGV handler,
so address sanitizer never reports the issue. See the included test for an
example.
This commit fixes the issue by making libFuzzer preserve the SA_ONSTACK flag
when installing its signal handlers; the dedicated signal-handler stack set up
by the sanitizer runtime appears to be large enough to support the additional
frames from the fuzzer.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D101824
Fixes compilation on Android which has a TSDSharedRegistry object in the config.
Reviewed By: cryptoad, vitalybuka
Differential Revision: https://reviews.llvm.org/D101951
Operator new must align allocations for types with large alignment.
Before c++17 behavior was implementation defined and both clang and gc++
before 11 ignored alignment. Miss-aligned objects mysteriously crashed
tests on Ubuntu 14.
Alternatives are compile with -std=c++17 or -faligned-new, but they were
discarded as less portable.
Reviewed By: hctim
Differential Revision: https://reviews.llvm.org/D101874
The problem was introduced in D100348.
It's really hard to trigger the bug in a stress test - the race is just too
narrow - but the new checks in Thread::Init should at least provide usable
diagnostic if the problem ever returns.
Differential Revision: https://reviews.llvm.org/D101881
This relates to https://reviews.llvm.org/D95835.
In DFSan origin tracking we use StackDepot to record
stack traces and origin traces (like MSan origin tracking).
For at least two reasons, we wanted to control StackDepot's memory cost
1) We may use DFSan origin tracking to monitor programs that run for
many days. This may eventually use too much memory for StackDepot.
2) DFSan supports flush shadow memory to reduce overhead. After flush,
all existing IDs in StackDepot are not valid because no one will
refer to them.
Currently, the position hint of an entry in the persistent auto
dictionary is fixed to 1. As a consequence, with a 50% chance, the entry
is applied right after the first byte of the input. As the position 1
does not appear to have any particular significance, this is likely a
bug that may have been caused by confusing the constructor parameter
with a success count.
This commit resolves the issue by preserving any existing position hint
or disabling the hint if the original entry didn't have one.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D101686
Code patterns like this are common, `#` at the line beginning
(https://google.github.io/styleguide/cppguide.html#Preprocessor_Directives),
one space indentation for if/elif/else directives.
```
#if SANITIZER_LINUX
# if defined(__aarch64__)
# endif
#endif
```
However, currently clang-format wants to reformat the code to
```
#if SANITIZER_LINUX
#if defined(__aarch64__)
#endif
#endif
```
This significantly harms readability in my review. Use `IndentPPDirectives:
AfterHash` to defeat the diagnostic. clang-format will now suggest:
```
#if SANITIZER_LINUX
# if defined(__aarch64__)
# endif
#endif
```
Unfortunately there is no clang-format option using indent with 1 for
just preprocessor directives. However, this is still one step forward
from the current behavior.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D100238
The Scudo C unit tests are currently non-hermetic. In particular, adding
or removing a transfer batch is a global state of the allocator that
persists between tests. This can cause flakiness in
ScudoWrappersCTest.MallInfo, because the creation or teardown of a batch
causes mallinfo's uordblks or fordblks to move up or down by the size of
a transfer batch on malloc/free.
It's my opinion that uordblks and fordblks should track the statistics
related to the user's malloc() and free() usage, and not the state of
the internal allocator structures. Thus, excluding the transfer batches
from stat collection does the trick and makes these tests pass.
Repro instructions of the bug:
1. ninja ./projects/compiler-rt/lib/scudo/standalone/tests/ScudoCUnitTest-x86_64-Test
2. ./projects/compiler-rt/lib/scudo/standalone/tests/ScudoCUnitTest-x86_64-Test --gtest_filter=ScudoWrappersCTest.MallInfo
Reviewed By: cryptoad
Differential Revision: https://reviews.llvm.org/D101653
In the overwrite branch of MutationDispatcher::ApplyDictionaryEntry in
FuzzerMutate.cpp, the index Idx at which W.size() bytes are overwritten
with the word W is chosen uniformly at random in the interval
[0, Size - W.size()). This means that Idx + W.size() will always be
strictly less than Size, i.e., the last byte of the current unit will
never be overwritten.
This is fixed by adding 1 to the exclusive upper bound.
Addresses https://bugs.llvm.org/show_bug.cgi?id=49989.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D101625
Currently we have a bit of a mess related to tids:
- sanitizers re-declare kInvalidTid multiple times
- some call it kUnknownTid
- implicit assumptions that main tid is 0
- asan/memprof claim their tids need to fit into 24 bits,
but this does not seem to be true anymore
- inconsistent use of u32/int to store tids
Introduce kInvalidTid/kMainTid in sanitizer_common
and use them consistently.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101428
Commit efd254b636 ("tsan: fix deadlock in pthread_atfork callbacks")
fixed another deadlock related to atfork handling.
But builders with DCHECKs enabled reported failures of
pthread_atfork_deadlock2.c and pthread_atfork_deadlock3.c tests
related to the fact that we hold runtime locks on interceptor exit:
https://lab.llvm.org/buildbot/#/builders/70/builds/6727
This issue is somewhat inherent to the current approach,
we indeed execute user code (atfork callbacks) with runtime lock held.
Refactor fork handling to not run user code (atfork callbacks)
with runtime locks held. This change does this by installing
own atfork callbacks during runtime initialization.
Atfork callbacks run in LIFO order, so the expectation is that
our callbacks run last, right before the actual fork.
This way we lock runtime mutexes around fork, but not around
user callbacks.
Extend tests to also install after fork callbacks just to cover
more scenarios. Some tests also started reporting real races
that we previously suppressed.
Also extend tests to cover fork syscall support.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101517
This is to help review refactor the allocator code.
So it is easy to see which are the real public interfaces.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101586
To see how to extract a shared allocator interface for D101204,
found some unused code. Tests passed. Are they safe to remove?
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101559
We've got a user report about heap block allocator overflow.
Bump the L1 capacity of all dense slab allocators to maximum
and be careful to not page the whole L1 array in from .bss.
If OS uses huge pages, this still may cause a limited RSS increase
due to boundary huge pages, but avoiding that looks hard.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101161
While implementing support for the float128 routines on x86_64, I noticed
that __builtin_isinf() was returning true for 128-bit floating point
values that are not infinite when compiling with GCC and using the
compiler-rt implementation of the soft-float comparison functions.
After stepping through the assembly, I discovered that this was caused by
GCC assuming a sign-extended 64-bit -1 result, but our implementation
returns an enum (which then has zeroes in the upper bits) and therefore
causes the comparison with -1 to fail.
Fix this by using a CMP_RESULT typedef and add a static_assert that it
matches the GCC soft-float comparison return type when compiling with GCC
(GCC has a __libgcc_cmp_return__ mode that can be used for this purpose).
Also move the 3 copies of the same code to a shared .inc file.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D98205
COMPILER_RT_TSAN_DEBUG_OUTPUT enables TSAN_COLLECT_STATS,
which changes layout of runtime structs (some structs contain
stats when the option is enabled).
It's not OK to build runtime with the define, but tests without it.
The error is detected by build_consistency_stats/nostats.
Fix this by defining TSAN_COLLECT_STATS for tests to match the runtime.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101386
Commit efd254b636 ("tsan: fix deadlock in pthread_atfork callbacks")
fixed another deadlock related to atfork handling.
But builders with DCHECKs enabled reported failures of
pthread_atfork_deadlock2.c and pthread_atfork_deadlock3.c tests
related to the fact that we hold runtime locks on interceptor exit:
https://lab.llvm.org/buildbot/#/builders/70/builds/6727
This issue is somewhat inherent to the current approach,
we indeed execute user code (atfork callbacks) with runtime lock held.
Refactor fork handling to not run user code (atfork callbacks)
with runtime locks held. This change does this by installing
own atfork callbacks during runtime initialization.
Atfork callbacks run in LIFO order, so the expectation is that
our callbacks run last, right before the actual fork.
This way we lock runtime mutexes around fork, but not around
user callbacks.
Extend tests to also install after fork callbacks just to cover
more scenarios. Some tests also started reporting real races
that we previously suppressed.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101385
We take report/thread_registry locks around fork.
This means we cannot report any bugs in atfork handlers.
We resolved this by enabling per-thread ignores around fork.
This resolved some of the cases, but not all.
The added test triggers a race report from a signal handler
called from atfork callback, we reset per-thread ignores
around signal handlers, so we tried to report it and deadlocked.
But there are more cases: a signal handler can be called
synchronously if it's sent to itself. Or any other report
types would cause deadlocks as well: mutex misuse,
signal handler spoiling errno, etc.
Disable all reports for the duration of fork with
thr->suppress_reports and don't re-enable them around
signal handlers.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101154
This is undefined if SANITIZER_SYMBOLIZER_MARKUP is 1, which is the case for
Fuchsia, and will result in a undefined symbol error. This function is needed
by hwasan for online symbolization, but is not needed for us since we do
offline symbolization.
Differential Revision: https://reviews.llvm.org/D99386
This reapplies 1e1d75b190, which was reverted in ce1a4d5323 due to build
failures.
The unconditional dependencies on clang and llvm-jitlink in
compiler-rt/test/orc/CMakeLists.txt have been removed -- they don't appear to
be necessary, and I suspect they're the cause of the build failures seen
earlier.
Some builders failed with a missing clang dependency. E.g.
CMake Error at /Users/buildslave/jenkins/workspace/clang-stage1-RA/clang-build \
/lib/cmake/llvm/AddLLVM.cmake:1786 (add_dependencies):
The dependency target "clang" of target "check-compiler-rt" does not exist.
Reverting while I investigate.
This reverts commit 1e1d75b190.
This patch does a few cleanup things:
1. The non-standalone scudo has a problem where GWP-ASan allocations
may not meet alignment requirements where Scudo was requested to have
alignment >= 16. Use the new GWP-ASan API to fix this.
2. The standalone variant loses some debugging information inside of
GWP-ASan because we ask GWP-ASan to allocate an aligned size in the
frontend. This means reports end up with 'UaF on a 16-byte allocation'
for a 1-byte allocation with 16-byte alignment. Also use the new API to
fix this.
3. Add post-alloc hooks for GWP-ASan intercepted allocations, and add
stats tracking for GWP-ASan allocations.
4. Add a small test that checks the alignment of the frontend
allocator, so that it can be used under GWP-ASan torture mode.
5. Add GWP-ASan torture mode as a testing configuration to catch these
regressions.
Depends on D94830, D95889.
Reviewed By: cryptoad
Differential Revision: https://reviews.llvm.org/D95884
From a cache perspective it's better to store the header immediately
after loading it. If we delay this operation until after we've
retagged it's more likely that our header will have been evicted from
the cache and we'll need to fetch it again in order to perform the
compare-exchange operation.
For similar reasons, store the deallocation stack before retagging
instead of afterwards.
Differential Revision: https://reviews.llvm.org/D101137
It looks like there's some old version of gcc that doesn't like this
static_assert (I couldn't reproduce the issue with gcc 8, 9 or 10).
Work around the issue by only checking the static_assert under clang,
which should provide sufficient coverage.
Should hopefully fix this buildbot:
https://lab.llvm.org/buildbot/#/builders/112/builds/5356
With AndroidSizeClassMap all of the LSBs are in the range 4-6 so we
only need 2 bits of information per size class. Furthermore we have
32 size classes, which conveniently lets us fit all of the information
into a 64-bit integer. Do so if possible so that we can avoid a table
lookup entirely.
Differential Revision: https://reviews.llvm.org/D101105
In the most common case we call computeOddEvenMaskForPointerMaybe()
from quarantineOrDeallocateChunk(), in which case we need to look up
the class size from the SizeClassMap in order to compute the LSB. Since
we need to do a lookup anyway, we may as well look up the LSB itself
and avoid computing it every time.
While here, switch to a slightly more efficient way of computing the
odd/even mask.
Differential Revision: https://reviews.llvm.org/D101018
The first version of origin tracking tracks only memory stores. Although
this is sufficient for understanding correct flows, it is hard to figure
out where an undefined value is read from. To find reading undefined values,
we still have to do a reverse binary search from the last store in the chain
with printing and logging at possible code paths. This is
quite inefficient.
Tracking memory load instructions can help this case. The main issues of
tracking loads are performance and code size overheads.
With tracking only stores, the code size overhead is 38%,
memory overhead is 1x, and cpu overhead is 3x. In practice #load is much
larger than #store, so both code size and cpu overhead increases. The
first blocker is code size overhead: link fails if we inline tracking
loads. The workaround is using external function calls to propagate
metadata. This is also the workaround ASan uses. The cpu overhead
is ~10x. This is a trade off between debuggability and performance,
and will be used only when debugging cases that tracking only stores
is not enough.
Reviewed By: gbalats
Differential Revision: https://reviews.llvm.org/D100967
Since we already have a tagged pointer available to us, we can just
extract the tag from it and avoid an LDG instruction.
Differential Revision: https://reviews.llvm.org/D101014
Now that we have a more efficient implementation of storeTags(),
we should start using it from resizeTaggedChunk(). With that, plus
a new storeTag() function, resizeTaggedChunk() can be made generic,
and so can prepareTaggedChunk(). Make it so.
Now that the functions are generic, move them to combined.h so that
memtag.h no longer needs to know about chunks.
Differential Revision: https://reviews.llvm.org/D100911
DC GZVA can operate on multiple granules at a time (corresponding to
the CPU's cache line size) so we can generally expect it to be faster
than STZG in a loop.
Differential Revision: https://reviews.llvm.org/D100910
An empty macro that expands to just `... else ;` can get
warnings from some compilers (e.g. GCC's -Wempty-body).
Reviewed By: cryptoad, vitalybuka
Differential Revision: https://reviews.llvm.org/D100693
If these sizes do not match, asan will not work as expected. Previously, we added compile-time checks for non-iOS platforms. We check at run time for iOS because we get the max VM size from the kernel at run time.
rdar://76477969
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D100784
sanitizer_linux_libcdep.cpp doesn't build for Linux sparc (with minimum support
but can build) after D98926. I wasn't aware because the file didn't mention
`__sparc__`.
While here, add the relevant support since it does not add complexity
(the D99566 approach). Adds an explicit `#error` for unsupported
non-Android Linux and FreeBSD architectures.
ThreadDescriptorSize is only used by lsan to scan thread-specific data keys in
the thread control block.
On TLS Variant II architectures (i386/x86_64/s390/sparc), our dl_iterate_phdr
based approach can cover the region from the first byte of the static TLS block
(static TLS surplus) to the thread pointer.
We just need to extend the range to include the first few members of struct
pthread. offsetof(struct pthread, specific_used) satisfies the requirement and
has not changed since 2007-05-10. We don't need to update ThreadDescriptorSize
for each glibc version.
Technically we could use the 524/1552 for x86_64 as well but there is potential
risk that large applications with thousands of shared object dependency may
dislike the time complexity increase if there are many threads, so I don't make
the simplification for now.
Differential Revision: https://reviews.llvm.org/D100892
If these sizes do not match, asan will not work as expected.
If possible, assert at compile time that the vm size is less than or equal to mmap range.
If a compile time assert is not possible, check at run time (for iOS)
rdar://76477969
Reviewed By: delcypher, yln
Differential Revision: https://reviews.llvm.org/D100239
We previously shrunk the mmap range size on ios, but those settings got inherited by apple silicon macs.
Don't shrink the vm range on apple silicon Mac since we have access to the full range.
Also don't shrink vm range for iOS simulators because they have the same range as the host OS, not the simulated OS.
rdar://75302812
Reviewed By: delcypher, kubamracek, yln
Differential Revision: https://reviews.llvm.org/D100234
As mentioned in https://gcc.gnu.org/PR100114 , glibc starting with the
https://sourceware.org/git/?p=glibc.git;a=commit;h=6c57d320484988e87e446e2e60ce42816bf51d53
change doesn't define SIGSTKSZ and MINSIGSTKSZ macros to constants, but to sysconf function call.
sanitizer_posix_libcdep.cpp has
static const uptr kAltStackSize = SIGSTKSZ * 4; // SIGSTKSZ is not enough.
which is generally fine, just means that when SIGSTKSZ is not a compile time constant will be initialized later.
The problem is that kAltStackSize is used in SetAlternateSignalStack which is called very early, from .preinit_array
initialization, i.e. far before file scope variables are constructed, which means it is not initialized and
mmapping 0 will fail:
==145==ERROR: AddressSanitizer failed to allocate 0x0 (0) bytes of SetAlternateSignalStack (error code: 22)
Here is one possible fix, another one could be to make kAltStackSize a preprocessor macro if _SG_SIGSTKSZ is defined
(but perhaps with having an automatic const variable initialized to it so that sysconf isn't at least called twice
during SetAlternateSignalStack.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D100645
In order to integrate libFuzzer with a dynamic symbolic execution tool
Sydr we need to print loaded file paths.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D100303
... so that FreeBSD specific GetTls/glibc specific pthread_self code can be
removed. This also helps FreeBSD arm64/powerpc64 which don't have GetTls
implementation yet.
GetTls is the range of
* thread control block and optional TLS_PRE_TCB_SIZE
* static TLS blocks plus static TLS surplus
On glibc, lsan requires the range to include
`pthread::{specific_1stblock,specific}` so that allocations only referenced by
`pthread_setspecific` can be scanned.
This patch uses `dl_iterate_phdr` to collect TLS blocks. Find the one
with `dlpi_tls_modid==1` as one of the initially loaded module, then find
consecutive ranges. The boundaries give us addr and size.
This allows us to drop the glibc internal `_dl_get_tls_static_info` and
`InitTlsSize`. However, huge glibc x86-64 binaries with numerous shared objects
may observe time complexity penalty, so exclude them for now. Use the simplified
method with non-Android Linux for now, but in theory this can be used with *BSD
and potentially other ELF OSes.
This removal of RISC-V `__builtin_thread_pointer` makes the code compilable with
more compiler versions (added in Clang in 2020-03, added in GCC in 2020-07).
This simplification enables D99566 for TLS Variant I architectures.
Note: as of musl 1.2.2 and FreeBSD 12.2, dlpi_tls_data returned by
dl_iterate_phdr is not desired: https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=254774
This can be worked around by using `__tls_get_addr({modid,0})` instead
of `dlpi_tls_data`. The workaround can be shared with the workaround for glibc<2.25.
This fixes some tests on Alpine Linux x86-64 (musl)
```
test/lsan/Linux/cleanup_in_tsd_destructor.c
test/lsan/Linux/fork.cpp
test/lsan/Linux/fork_threaded.cpp
test/lsan/Linux/use_tls_static.cpp
test/lsan/many_tls_keys_thread.cpp
test/msan/tls_reuse.cpp
```
and `test/lsan/TestCases/many_tls_keys_pthread.cpp` on glibc aarch64.
The number of sanitizer test failures does not change on FreeBSD/amd64 12.2.
Differential Revision: https://reviews.llvm.org/D98926
While attempting to roll the latest Scudo in Fuchsia, some issues
arose. While trying to debug them, it appeared that `DCHECK`s were
also never exercised in Fuchsia. This CL fixes the following
problems:
- the size of a block in the TransferBatch class must be a multiple
of the compact pointer scale. In some cases, it wasn't true, which
lead to obscure crashes. Now, we round up `sizeof(TransferBatch)`.
This only materialized in Fuchsia due to the specific parameters
of the `DefaultConfig`;
- 2 `DCHECK` statements in Fuchsia were incorrect;
- `map()` & co. require a size multiple of a page (as enforced in
Fuchsia `DCHECK`s), which wasn't the case for `PackedCounters`.
- In the Secondary, a parameter was marked as `UNUSED` while it is
actually used.
Differential Revision: https://reviews.llvm.org/D100524
Do not hold the free/live thread list lock longer than necessary.
This change speeds up the following benchmark 10x.
constexpr int kTopThreads = 50;
constexpr int kChildThreads = 20;
constexpr int kChildIterations = 8;
void Thread() {
for (int i = 0; i < kChildIterations; ++i) {
std::vector<std::thread> threads;
for (int i = 0; i < kChildThreads; ++i)
threads.emplace_back([](){});
for (auto& t : threads)
t.join();
}
}
int main() {
std::vector<std::thread> threads;
for (int i = 0; i < kTopThreads; ++i)
threads.emplace_back(Thread);
for (auto& t : threads)
t.join();
}
Differential Revision: https://reviews.llvm.org/D100348
The GNU assembler can't parse `.arch_extension ...` before a `;`.
So instead uniformly use raw string syntax with separate lines
instead of `;` separators in the assembly code.
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D100413
This will allow us to make osx specific changes easier. Because apple silicon macs also run on aarch64, it was easy to confuse it with iOS.
rdar://75302812
Reviewed By: yln
Differential Revision: https://reviews.llvm.org/D100157
ASan declares these functions as strongly-defined, which results in
'duplicate symbol' errors when trying to replace them in user code when
linking the runtimes statically.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D100220
D99763 fixed `SizeClassAllocatorLocalCache::drain` but with the
assumption that `BatchClassId` is 0 - which is currently true. I would
rather not make the assumption so that if we ever change the ID of
the batch class, the loop would still work. Since `BatchClassId` is
used more often in `local_cache.h`, introduce a constant so that we
don't have to specify `SizeClassMap::` every time.
Differential Revision: https://reviews.llvm.org/D100062
After a follow-up change (D98332) this header can be included the same time
as fenv.h when running the tests. To avoid enum members conflicting with
the macros/enums defined in the host fenv.h, prefix them with CRT_.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D98333
Fixes the ASan RISC-V memory mapping (originally introduced by D87580 and
D87581). This should be an improvement both in terms of first principles
soundness and observed test failures --- test failures would occur
non-deterministically depending on the ASLR random offset.
On RISC-V Linux (64-bit), `TASK_UNMAPPED_BASE` is currently defined as
`PAGE_ALIGN(TASK_SIZE / 3)`. The non-power-of-two divisor makes the result
be the not very round number 0x1555556000. That address had to be further
rounded to ensure page alignment after the shadow scale shifting is applied.
Still, that value explains why the mapping table may look less regular than
expected.
Further cleanups:
- Moved the mapping table comment, to ensure that the two Linux/AArch64
tables stayed together;
- Removed mention of Sv48. Neither the original mapping nor this one are
compatible with an actual Linux Sv48 address space (mainline Linux still
operates Sv48 in Sv39 mode). A future patch can improve this;
- Removed the additional comments, for consistency.
Differential Revision: https://reviews.llvm.org/D97646
This was reverted by f176803ef1 due to
Ubuntu 16.04 x86-64 glibc 2.23 problems.
This commit additionally calls `__tls_get_addr({modid,0})` to work around the
dlpi_tls_data==NULL issues for glibc<2.25
(https://sourceware.org/bugzilla/show_bug.cgi?id=19826)
GetTls is the range of
* thread control block and optional TLS_PRE_TCB_SIZE
* static TLS blocks plus static TLS surplus
On glibc, lsan requires the range to include
`pthread::{specific_1stblock,specific}` so that allocations only referenced by
`pthread_setspecific` can be scanned.
This patch uses `dl_iterate_phdr` to collect TLS blocks. Find the one
with `dlpi_tls_modid==1` as one of the initially loaded module, then find
consecutive ranges. The boundaries give us addr and size.
This allows us to drop the glibc internal `_dl_get_tls_static_info` and
`InitTlsSize` entirely. Use the simplified method with non-Android Linux for
now, but in theory this can be used with *BSD and potentially other ELF OSes.
This simplification enables D99566 for TLS Variant I architectures.
See https://reviews.llvm.org/D93972#2480556 for analysis on GetTls usage
across various sanitizers.
Differential Revision: https://reviews.llvm.org/D98926
The check was removed in D99786 as it seems that quarantine is
irrelevant for the just created allocator. However there is internal
issues with tagged memory access.
We should be able to fix iterateOverChunks for taggin later.
Existing implementations took up to 30 minutues to execute on my setup.
Now it's more convenient to debug a single test.
Reviewed By: cryptoad
Differential Revision: https://reviews.llvm.org/D99786
Linux-only for now. Some mac bits stubbed out, but not tested.
Good enough for the tiny_race.c example at
https://clang.llvm.org/docs/ThreadSanitizer.html :
$ out/gn/bin/clang -fsanitize=address -g -O1 tiny_race.c
$ while true; do ./a.out || echo $? ; done
While here, also make `-fsanitize=address` work for .c files.
Differential Revision: https://reviews.llvm.org/D99795
This change adds a SimpleFastHash64 variant of SimpleFastHash which allows call sites to specify a starting value and get a 64 bit hash in return. This allows a hash to be "resumed" with more data.
A later patch needs this to be able to hash a sequence of module-relative values one at a time, rather than just a region a memory.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D94510
Trying to build the builtins code fails because `arm64_32_SOURCES` is
missing. Setting it to the same list used for `aarch64_SOURCES` solves
that problem and allow the builtins to compile for that architecture.
Additionally, arm64_32 is added as a possible architecture for watchos
platforms.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D99690
On 64-bit systems with small VMAs (e.g. 39-bit) we can't use
SizeClassAllocator64 parameterized with size class maps containing a large
number of classes, as that will make the allocator region size too small
(< 2^32). Several tests were already disabled for Android because of this.
This patch provides the correct allocator configuration for RISC-V
(riscv64), generalizes the gating condition for tests that can't be enabled
for small VMA systems, and tweaks the tests that can be made compatible with
those systems to enable them.
I think the previous gating on Android should instead be AArch64+Android, so
the patch reflects that.
Differential Revision: https://reviews.llvm.org/D97234
The previous code may underestimate the static TLS surplus part, which may cause
false positives to LeakSanitizer if a dynamically loaded module uses the surplus
and there is an allocation only referenced by a thread's TLS.
GetTls is the range of
* thread control block and optional TLS_PRE_TCB_SIZE
* static TLS blocks plus static TLS surplus
On glibc, lsan requires the range to include
`pthread::{specific_1stblock,specific}` so that allocations only referenced by
`pthread_setspecific` can be scanned.
This patch uses `dl_iterate_phdr` to collect TLS ranges. Find the one
with `dlpi_tls_modid==1` as one of the initially loaded module, then find
consecutive ranges. The boundaries give us addr and size.
This allows us to drop the glibc internal `_dl_get_tls_static_info` and
`InitTlsSize` entirely. Use the simplified method with non-Android Linux for
now, but in theory this can be used with *BSD and potentially other ELF OSes.
In the future, we can move `ThreadDescriptorSize` code to lsan (and consider
intercepting `pthread_setspecific`) to avoid hacks in generic code.
See https://reviews.llvm.org/D93972#2480556 for analysis on GetTls usage
across various sanitizers.
Differential Revision: https://reviews.llvm.org/D98926
Userspace page aliasing allows us to use middle pointer bits for tags
without untagging them before syscalls or accesses. This should enable
easier experimentation with HWASan on x86_64 platforms.
Currently stack, global, and secondary heap tagging are unsupported.
Only primary heap allocations get tagged.
Note that aliasing mode will not work properly in the presence of
fork(), since heap memory will be shared between the parent and child
processes. This mode is non-ideal; we expect Intel LAM to enable full
HWASan support on x86_64 in the future.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98875
Make TSan runtime initialization and finalization hooks work
even if these hooks are not built in the main executable. When these
hooks are defined in another library that is not directly linked against
the TSan runtime (e.g., Swift runtime) we cannot rely on the "strong-def
overriding weak-def" mechanics and have to look them up via `dlsym()`.
Let's also define hooks that are easier to use from C-only code:
```
extern "C" void __tsan_on_initialize();
extern "C" int __tsan_on_finalize(int failed);
```
For now, these will call through to the old hooks. Eventually, we want
to adopt the new hooks downstream and remove the old ones.
This is part of the effort to support Swift Tasks (async/await and
actors) in TSan.
rdar://74256720
Reviewed By: vitalybuka, delcypher
Differential Revision: https://reviews.llvm.org/D98810
Userspace page aliasing allows us to use middle pointer bits for tags
without untagging them before syscalls or accesses. This should enable
easier experimentation with HWASan on x86_64 platforms.
Currently stack, global, and secondary heap tagging are unsupported.
Only primary heap allocations get tagged.
Note that aliasing mode will not work properly in the presence of
fork(), since heap memory will be shared between the parent and child
processes. This mode is non-ideal; we expect Intel LAM to enable full
HWASan support on x86_64 in the future.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98875
Supported ctime_r, fgets, getcwd, get_current_dir_name, gethostname,
getrlimit, getrusage, strcpy, time, inet_pton, localtime_r,
getpwuid_r, epoll_wait, poll, select, sched_getaffinity
Most of them work as calling their non-origin verision directly.
This is a part of https://reviews.llvm.org/D95835.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D98966
Supported strrchr, strrstr, strto*, recvmmsg, recrmsg, nanosleep,
memchr, snprintf, socketpair, sprintf, getocketname, getsocketopt,
gettimeofday, getpeername.
strcpy was added because the test of sprintf need it. It will be
committed by D98966. Please ignore it when reviewing.
This is a part of https://reviews.llvm.org/D95835.
Reviewed By: gbalats
Differential Revision: https://reviews.llvm.org/D99109
The function works like MapDynamicShadow, except that it creates aliased
memory to the right of the shadow. The main use case is for HWASan
aliasing mode, which gets fast IsAlias() checks by exploiting the fact
that the upper bits of the shadow base and aliased memory match.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98369
The main use case for this change is HWASan aliasing mode, which premaps
the alias space adjacent to the dynamic shadow. With this change, the
primary allocator can allocate from the alias space instead of a
separate region.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98293
The main use case for this change is HWASan aliasing mode, which premaps
the alias space adjacent to the dynamic shadow. With this change, the
primary allocator can allocate from the alias space instead of a
separate region.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98293
x86_64 aliasing mode will use fewer than 8 bits for tags, so refactor
existing code to remove hard-coded 0xff and 8 values.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98072
-mbranch-protection protects the LR on the stack with PAC.
When the frames are walked the LR need to be cleared.
This inline assembly later will be replaced with a new builtin.
Test: build with -DCMAKE_C_FLAGS="-mbranch-protection=standard".
Reviewed By: kubamracek
Differential Revision: https://reviews.llvm.org/D98008
InternalScopedString uses InternalMmapVector internally
so it can be resized dynamically as needed.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D98751
An implementation of `__sanitizer::BufferedStackTrace::UnwindImpl` is
provided per sanitizer, but there isn't one for sanitizer-common. In
non-optimized builds of the sanitizer-common tests that becomes a problem:
the test `sanitizer_stacktrace_test.cpp` won't have a reference to that
method optimized away, causing linking errors. This patch provides a dummy
implementation, which fixes those builds.
Differential Revision: https://reviews.llvm.org/D96956
size() is inconsistent with length().
In most size() use cases we can replace InternalScopedString with
InternalMmapVector.
Remove non-constant data() to avoid direct manipulations of internal
buffer. append() should be enought to modify InternalScopedString.
This fixes detection when linking isn't supported (i.e. while building
builtins the first time).
Since 8368e4d54c, after setting
CMAKE_TRY_COMPILE_TARGET_TYPE to STATIC_LIBRARY, this isn't strictly
needed, but is good for correctness anyway (and in case that commit
ends up reverted).
Differential Revision: https://reviews.llvm.org/D98737
Also use this in ReadBinaryName which currently is producing
warnings.
Keep pragmas for silencing warnings in sanitizer_unwind_win.cpp,
as that can be called more frequently.
Differential Revision: https://reviews.llvm.org/D97726
Android's native bridge (i.e. AArch64 emulator) doesn't support TBI so
we need a way to disable TBI on Linux when targeting the native bridge.
This can also be used to test the no-TBI code path on Linux (currently
only used on Fuchsia), or make Scudo compatible with very old
(pre-commit d50240a5f6ceaf690a77b0fccb17be51cfa151c2 from June 2013)
Linux kernels that do not enable TBI.
Differential Revision: https://reviews.llvm.org/D98732
Since we are looking to remove the old Scudo, we have to have a .so for
parity purposes as some platforms use it.
I tested this on Fuchsia & Linux, not on Android though.
Differential Revision: https://reviews.llvm.org/D98456
On 64-bit systems with small VMAs (e.g. 39-bit) we can't use
`SizeClassAllocator64` parameterized with size class maps containing a
large number of classes, as that will make the allocator region size too
small (< 2^32). Several tests were already disabled for Android because
of this.
This patch provides the correct allocator configuration for RISC-V
(riscv64), generalizes the gating condition for tests that can't be
enabled for small VMA systems, and tweaks the tests that can be made
compatible with those systems to enable them.
Differential Revision: https://reviews.llvm.org/D97234
-mbranch-protection protects the LR on the stack with PAC.
When the frames are walked the LR need to be cleared.
This inline assembly later will be replaced with a new builtin.
Test: build with -DCMAKE_C_FLAGS="-mbranch-protection=standard".
Reviewed By: kubamracek
Differential Revision: https://reviews.llvm.org/D98008
Previously, that configuration only used the generic sources, in
addition to the couple specifically chosen arm/mingw files.
Differential Revision: https://reviews.llvm.org/D98547
The existing value of 0x1000 sets the IXE bit (Inexact floating-point exception
trap enable), but we really want to be setting IXC, bit 4:
Inexact cumulative floating-point exception bit. This bit is set to 1 to
indicate that the Inexact floating-point exception has occurred since 0 was
last written to this bit.
Reviewed By: kongyi, peter.smith
Differential Revision: https://reviews.llvm.org/D98353
The inlining of this function needs to be disabled as it is part of the
inpsected stack traces. It's string representation will look different
depending on if it was inlined or not which will cause it's string comparison
to fail.
When it was inlined in only one of the two execution stacks,
minimize_two_crashes.test failed on SystemZ. For details see
https://bugs.llvm.org/show_bug.cgi?id=49152.
Reviewers: Ulrich Weigand, Matt Morehouse, Arthur Eubanks
Differential Revision: https://reviews.llvm.org/D97975
Right now, when you have an invalid memory address, asan would just crash and does not offer much useful info.
This patch attempted to give a bit more detail on the access.
Differential Revision: https://reviews.llvm.org/D98280
Some linux distributions produce versioned llvm-symbolizer binaries,
e.g. my llvm-11 installation puts the symbolizer binary at
/usr/bin/llvm-symbolizer-11.0.0 . However if you then try to run
a binary containing ASAN with
ASAN_SYMBOLIZER_PATH=..../llvm-symbolizer-FOO , it will fail on startup
with "isn't a known symbolizer".
Although it is possible to work around this by setting up symlinks,
that's kindof ugly - supporting versioned binaries is a nicer solution.
(There are now multiple stack overflow and blog posts talking about
this exact issue :) .)
Originally added in:
https://reviews.llvm.org/D8285
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D97682
Attempting to build a standalone libFuzzer in Fuchsia's default toolchain for the purpose of cross-compiling the unit tests revealed a number of not-quite-proper type conversions. Fuchsia's toolchain include `-std=c++17` and `-Werror`, among others, leading to many errors like `-Wshorten-64-to-32`, `-Wimplicit-float-conversion`, etc.
Most of these have been addressed by simply making the conversion explicit with a `static_cast`. These typically fell into one of two categories: 1) conversions between types where high precision isn't critical, e.g. the "energy" calculations for `InputInfo`, and 2) conversions where the values will never reach the bits being truncated, e.g. `DftTimeInSeconds` is not going to exceed 136 years.
The major exception to this is the number of features: there are several places that treat features as `size_t`, and others as `uint32_t`. This change makes the decision to cap the features at 32 bits. The maximum value of a feature as produced by `TracePC::CollectFeatures` is roughly:
(NumPCsInPCTables + ValueBitMap::kMapSizeInBits + ExtraCountersBegin() - ExtraCountersEnd() + log2(SIZE_MAX)) * 8
It's conceivable for extremely large targets and/or extra counters that this limit could be reached. This shouldn't break fuzzing, but it will cause certain features to collide and lower the fuzzers overall precision. To address this, this change adds a warning to TracePC::PrintModuleInfo about excessive feature size if it is detected, and recommends refactoring the fuzzer into several smaller ones.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D97992
When building builtins, the toolchain might not yet be at a stage
when linking a test application works yet, as builtins aren't
available. Therefore set CMAKE_TRY_COMPILE_TARGET_TYPE to STATIC_LIBRARY,
to avoid failing the compiler sanity check.
Setting CMAKE_TRY_COMPILE_TARGET_TYPE to STATIC_LIBRARY has the risk
of making checks for library availability succeed falsely (e.g.
indicating that libs would be available that really aren't, as the
tests don't do any linking), but the builtins library doesn't try to
link against any external libraries (and only produces static libraries
anyway), so it should be safe here.
This avoids having to set CMAKE_C_COMPILER_WORKS when bootstrapping a
cross toolchain, when building the builtins.
Differential Revision: https://reviews.llvm.org/D91334
The paciasp and autiasp instructions are only accepted by recent
compilers, but have the same encoding as hint instructions, so we can
use the hint menmonic to support older compilers.
This avoids the `__NR_gettimeofday` syscall number, which does not exist on 32-bit musl (it has `__NR_gettimeofday_time32`).
This switched Android to `clock_gettime` as well, which should work according to the old code before D96925.
Tested on Alpine Linux x86-64 (musl) and FreeBSD x86-64.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D98121
All check-tsan tests fail on aarch64-*-linux because HeapMemEnd() > ShadowBeg()
for the following code path:
```
#if defined(__aarch64__) && !HAS_48_BIT_ADDRESS_SPACE
ProtectRange(HeapMemEnd(), ShadowBeg());
```
Restore the behavior before D86377 for aarch64-*-linux.
The LR is stored to off-stack spill area where it is vulnerable.
"paciasp" add an auth code to the LR while the "autiasp" verifies that so
LR can't be modiifed on the spill area.
Test: build with -DCMAKE_C_FLAGS="-mbranch-protection=standard",
run on Armv8.3 capable hardware with PAuth.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D98009
On FreeBSD the sys/timeb.h header has a #warning that it's deprecated.
However, we need to include this header here, so silence this warning that
is printed multiple times otherwise.
Reviewed By: dim
Differential Revision: https://reviews.llvm.org/D94963
I accidentally committed the wrong version of this patch which didn't
actually enable the hooks for FreeBSD. Fixing the typo allows the tests
to actually pass.
There is no centralized store of information related to secondary
allocations. Moreover the allocations themselves become inaccessible
when the allocation is freed in order to implement UAF detection,
so we can't store information there to be used in case of UAF
anyway.
Therefore our storage location for tracking stack traces of secondary
allocations is a ring buffer. The ring buffer is copied to the process
creating the crash dump when a fault occurs.
The ring buffer is also used to store stack traces for primary
deallocations. Stack traces for primary allocations continue to be
stored inline.
In order to support the scenario where an access to the ring buffer
is interrupted by a concurrently occurring crash, the ring buffer is
accessed in a lock-free manner.
Differential Revision: https://reviews.llvm.org/D94212
Go requires 47 bits VA for tsan.
Go will run race_detector testcases unless tsan warns about "unsupported VMA range"
Author: mzh (Meng Zhuo)
Reviewed-in: https://reviews.llvm.org/D98238
This patch enhances the secondary allocator to be able to detect buffer
overflow, and (on hardware supporting memory tagging) use-after-free
and buffer underflow.
Use-after-free detection is implemented by setting memory page
protection to PROT_NONE on free. Because this must be done immediately
rather than after the memory has been quarantined, we no longer use the
combined allocator quarantine for secondary allocations. Instead, a
quarantine has been added to the secondary allocator cache.
Buffer overflow detection is implemented by aligning the allocation
to the right of the writable pages, so that any overflows will
spill into the guard page to the right of the allocation, which
will have PROT_NONE page protection. Because this would require the
secondary allocator to produce a header at the correct position,
the responsibility for ensuring chunk alignment has been moved to
the secondary allocator.
Buffer underflow detection has been implemented on hardware supporting
memory tagging by tagging the memory region between the start of the
mapping and the start of the allocation with a non-zero tag. Due to
the cost of pre-tagging secondary allocations and the memory bandwidth
cost of tagged accesses, the allocation itself uses a tag of 0 and
only the first four pages have memory tagging enabled.
This is a reland of commit 7a0da88943 which was reverted in commit
9678b07e42. This reland includes the following changes:
- Fix the calculation of BlockSize which led to incorrect statistics
returned by mallinfo().
- Add -Wno-pedantic to silence GCC warning.
- Optionally add some slack at the end of secondary allocations to help
work around buggy applications that read off the end of their
allocation.
Differential Revision: https://reviews.llvm.org/D93731
A RISC-V implementation of `internal_clone` was introduced in D87573, as
part of the RISC-V ASan patch set by @EccoTheDolphin. That function was
never used/tested until I ported LSan for RISC-V, as part of D92403. That
port revealed problems in the original implementation, so I provided a fix
in D92403. Unfortunately, my choice of replacing the assembly with regular
C++ code wasn't correct. The clone syscall arguments specify a separate
stack, so non-inlined calls, spills, etc. aren't going to work. This wasn't
a problem in practice for optimized builds of Compiler-RT, but it breaks
for debug builds. This patch fixes the original problem while keeping the
assembly.
Differential Revision: https://reviews.llvm.org/D96954
Previously, on GLibc systems, the interceptor was calling __compat_regexec
(regexec@GLIBC_2.2.5) insead of the newer __regexec (regexec@GLIBC_2.3.4).
The __compat_regexec strips the REG_STARTEND flag but does not report an
error if other flags are present. This can result in infinite loops for
programs that use REG_STARTEND to find all matches inside a buffer (since
ignoring REG_STARTEND means that the search always starts from the first
character).
The underlying issue is that GLibc's dlsym(RTLD_NEXT, ...) appears to
always return the oldest versioned symbol instead of the default. This
means it does not match the behaviour of dlsym(RTLD_DEFAULT, ...) or the
behaviour documented in the manpage.
It appears a similar issue was encountered with realpath and worked around
in 77ef78a0a5.
See also https://sourceware.org/bugzilla/show_bug.cgi?id=14932 and
https://sourceware.org/bugzilla/show_bug.cgi?id=1319.
Fixes https://github.com/google/sanitizers/issues/1371
Reviewed By: #sanitizers, vitalybuka, marxin
Differential Revision: https://reviews.llvm.org/D96348
This reverts commit bde2e56071.
This patch produces a compile failure on linux amd64 environments, when
running:
ninja GotsanRuntimeCheck
I get various build errors:
../rtl/tsan_platform.h:608: error: use of undeclared identifier 'Mapping'
return MappingImpl<Mapping, Type>();
Here's a buildbot with the same failure during stage "check-tsan in gcc
build", there are other unrelated failures in there.
http://lab.llvm.org:8011/#/builders/37/builds/2831
As reported in D93278 post-review symlinking requires privilege escalation on Windows.
Copying is functionally same, so fallback to it for systems that aren't Unix-like.
This is similar to the solution in AddLLVM.cmake.
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D98111
This patch modifies the x86_64 XRay trampolines to fix the CFI information
generated by the assembler. One of the main issues in correcting the CFI
directives is the `ALIGNED_CALL_RAX` macro, which makes the CFA dependent on
the alignment of the stack. However, this macro is not really necessary because
some additional assumptions can be made on the alignment of the stack when the
trampolines are called. The code has been written as if the stack is guaranteed
to be 8-bytes aligned; however, it is instead guaranteed to be misaligned by 8
bytes with respect to a 16-bytes alignment. For this reason, always moving the
stack pointer by 8 bytes is sufficient to restore the appropriate alignment.
Trampolines that are called from within a function as a result of the builtins
`__xray_typedevent` and `__xray_customevent` are necessarely called with the
stack properly aligned so, in this case too, `ALIGNED_CALL_RAX` can be
eliminated.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49060
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D96785
The hackery is due to glibc clock_gettime crashing from preinit_array (D40679).
32-bit musl architectures do not define `__NR_clock_gettime` so the code causes a compile error.
Tested on Alpine Linux x86-64 (musl) and FreeBSD x86-64.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D96925
Currently, `print_module_map` is only respected for ubsan if it is ran in tandem with asan. This patch adds support for this flag in standalone mode. I copied the pattern used to implement this for asan.
Also added a common `print_module_map` lit test for Darwin only. Since the print messages are different per platform, we need to write a regex test to cover them. This test is coming in a separate patch
rdar://56135732
Reviewed By: vitalybuka, vsk, delcypher
Differential Revision: https://reviews.llvm.org/D97746
> OSSpinLock is deprecated, so we are switching to `os_unfair_lock`. However, `os_unfair_lock` isn't available on older OSs, so we keep `OSSpinLock` as fallback.
>
> Also change runtime assumption check to static since they only ever check constant values.
>
> rdar://69588111
>
> Reviewed By: delcypher, yln
>
> Differential Revision: https://reviews.llvm.org/D97509
This reverts commit 71ef54337d.
This knob is useful for downstream users who want that some of their
libc functions to not be intercepted.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D97740
This patch modifies the x86_64 XRay trampolines to fix the CFI information
generated by the assembler. One of the main issues in correcting the CFI
directives is the `ALIGNED_CALL_RAX` macro, which makes the CFA dependent on
the alignment of the stack. However, this macro is not really necessary because
some additional assumptions can be made on the alignment of the stack when the
trampolines are called. The code has been written as if the stack is guaranteed
to be 8-bytes aligned; however, it is instead guaranteed to be misaligned by 8
bytes with respect to a 16-bytes alignment. For this reason, always moving the
stack pointer by 8 bytes is sufficient to restore the appropriate alignment.
Trampolines that are called from within a function as a result of the builtins
`__xray_typedevent` and `__xray_customevent` are necessarely called with the
stack properly aligned so, in this case too, `ALIGNED_CALL_RAX` can be
eliminated.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=49060
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D96785
OSSpinLock is deprecated, so we are switching to `os_unfair_lock`. However, `os_unfair_lock` isn't available on older OSs, so we keep `OSSpinLock` as fallback.
Also change runtime assumption check to static since they only ever check constant values.
rdar://69588111
Reviewed By: delcypher, yln
Differential Revision: https://reviews.llvm.org/D97509
They were added so that if no metadata section is present,
`__start_llvm_prf_*` references would not cause "undefined symbol"
errors. By switching to undefined weak symbols in D96936, the dummy
sections are not needed.
This patch is also needed to work around
https://sourceware.org/bugzilla/show_bug.cgi?id=27490
Differential Revision: https://reviews.llvm.org/D97648
This prevents from getting THP ranges more and more.
Did not see any issues in practice, just found this by code review.
Reviewed By: eugenis, vitalybuka
Differential Revision: https://reviews.llvm.org/D97593
This reverts commit 680f836c2f.
Disable the non-default-rounding-mode scalbn[f] tests when we're using
the MSVC libraries.
Differential Revision: https://reviews.llvm.org/D91841
As of 4f395db86b which contains updates to
-Wfree-nonheap-object, a line in this test will trigger the warning. This
particular line is ok though since it's meant to test a free on a bad pointer.
Differential Revision: https://reviews.llvm.org/D97516
This is a part of https://reviews.llvm.org/D95835.
Each customized function has two wrappers. The
first one dfsw is for the normal shadow propagation. The second one dfso is used
when origin tracking is on. It calls the first one, and does additional
origin propagation. Which one to use can be decided at instrumentation
time. This is to ensure minimal additional overhead when origin tracking
is off.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D97483
This CL introduces configuration options to allow pointers to be
compacted in the thread-specific caches and transfer batches. This
offers the possibility to have them use 32-bit of space instead of
64-bit for the 64-bit Primary, thus cutting the size of the caches
and batches by nearly half (and as such the memory used in size
class 0). The cost is an additional read from the region information
in the fast path.
This is not a new idea, as it's being used in the sanitizer_common
64-bit primary. The difference here is that it is configurable via
the allocator config, with the possibility of not compacting at all.
This CL enables compacting pointers in the Android and Fuchsia default
configurations.
Differential Revision: https://reviews.llvm.org/D96435
Fix a buffer overrun that can occur when parsing '%c' at the end of a
filename pattern string.
rdar://74571261
Reviewed By: kastiglione
Differential Revision: https://reviews.llvm.org/D97239
Define inline versions of __compiler_rt_fmax* and __compiler_rt_scalbn*
rather than depend on the versions in libm. As with
__compiler_rt_logbn*, these functions are only defined for single,
double, and quad precision (binary128).
Fixes PR32279 for targets using only these FP formats (e.g. Android
on arm/arm64/x86/x86_64).
For single and double precision, on AArch64, use __builtin_fmax[f]
instead of the new inline function, because the builtin expands to the
AArch64 fmaxnm instruction.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D91841
Add support for the new crash reporter api if the headers are available. Falls back to the old API if they are not available. This change was based on [[ 0164d546d2/llvm/lib/Support/PrettyStackTrace.cpp (L111) | /llvm/lib/Support/PrettyStackTrace.cpp ]]
There is a lit for this behavior here: https://reviews.llvm.org/D96737 but is not included in this diff because it is potentially flaky.
rdar://69767688
Reviewed By: delcypher, yln
Commited by Dan Liew on behalf of Emily Shi.
Differential Revision: https://reviews.llvm.org/D96830
/home/marxin/Programming/gcc2/libsanitizer/ubsan/ubsan_value.cpp:77:25: runtime error: left shift of 0x0000000000000000fffffffffffffffb by 96 places cannot be represented in type '__int128'
#0 0x7ffff754edfe in __ubsan::Value::getSIntValue() const /home/marxin/Programming/gcc2/libsanitizer/ubsan/ubsan_value.cpp:77
#1 0x7ffff7548719 in __ubsan::Value::isNegative() const /home/marxin/Programming/gcc2/libsanitizer/ubsan/ubsan_value.h:190
#2 0x7ffff7542a34 in handleShiftOutOfBoundsImpl /home/marxin/Programming/gcc2/libsanitizer/ubsan/ubsan_handlers.cpp:338
#3 0x7ffff75431b7 in __ubsan_handle_shift_out_of_bounds /home/marxin/Programming/gcc2/libsanitizer/ubsan/ubsan_handlers.cpp:370
#4 0x40067f in main (/home/marxin/Programming/testcases/a.out+0x40067f)
#5 0x7ffff72c8b24 in __libc_start_main (/lib64/libc.so.6+0x27b24)
#6 0x4005bd in _start (/home/marxin/Programming/testcases/a.out+0x4005bd)
Differential Revision: https://reviews.llvm.org/D97263
This patch enhances the secondary allocator to be able to detect buffer
overflow, and (on hardware supporting memory tagging) use-after-free
and buffer underflow.
Use-after-free detection is implemented by setting memory page
protection to PROT_NONE on free. Because this must be done immediately
rather than after the memory has been quarantined, we no longer use the
combined allocator quarantine for secondary allocations. Instead, a
quarantine has been added to the secondary allocator cache.
Buffer overflow detection is implemented by aligning the allocation
to the right of the writable pages, so that any overflows will
spill into the guard page to the right of the allocation, which
will have PROT_NONE page protection. Because this would require the
secondary allocator to produce a header at the correct position,
the responsibility for ensuring chunk alignment has been moved to
the secondary allocator.
Buffer underflow detection has been implemented on hardware supporting
memory tagging by tagging the memory region between the start of the
mapping and the start of the allocation with a non-zero tag. Due to
the cost of pre-tagging secondary allocations and the memory bandwidth
cost of tagged accesses, the allocation itself uses a tag of 0 and
only the first four pages have memory tagging enabled.
Differential Revision: https://reviews.llvm.org/D93731
When compiling with ccache, compiler commands get split into smaller steps
and clang's default -Wunused-command-line-argument complains about unused
include directory arguments. In combination -Werror, compilation aborts.
If CMAKE_C_FLAGS contains -Wno-unused-command-line-argument or
-Wno-error=unused-command-line-argument, the latter flag is passed into the
build script.
This is a re-commit. The previous version was reverted because of failing
tests.
Differential Revision: https://reviews.llvm.org/D96762
When adding this function in https://reviews.llvm.org/D68794 I did not
notice that internal_prctl has the API of the syscall to prctl rather
than the API of the glibc (posix) wrapper.
This means that the error return value is not necessarily -1 and that
errno is not set by the call.
For InitPrctl this means that the checks do not catch running on a
kernel *without* the required ABI (not caught since I only tested this
function correctly enables the ABI when it exists).
This commit updates the two calls which check for an error condition to
use internal_iserror. That function sets a provided integer to an
equivalent errno value and returns a boolean to indicate success or not.
Tested by running on a kernel that has this ABI and on one that does
not. Verified that running on the kernel without this ABI the current
code prints the provided error message and does not attempt to run the
program. Verified that running on the kernel with this ABI the current
code does not print an error message and turns on the ABI.
This done on an x86 kernel (where the ABI does not exist), an AArch64
kernel without this ABI, and an AArch64 kernel with this ABI.
In order to keep running the testsuite on kernels that do not provide
this new ABI we add another option to the HWASAN_OPTIONS environment
variable, this option determines whether the library kills the process
if it fails to enable the relaxed syscall ABI or not.
This new flag is `fail_without_syscall_abi`.
The check-hwasan testsuite results do not change with this patch on
either x86, AArch64 without a kernel supporting this ABI, and AArch64
with a kernel supporting this ABI.
Differential Revision: https://reviews.llvm.org/D96964
To make a kind of metadata section usage work, we want to drop the
`__start_/__stop_ references retain C identifier name sections` rule from LLD (see D96914).
If an application has no `__llvm_prf_data` input section surviving --gc-sections,
LLD will error for undefined hidden `{__start_,__stop_}__llvm_prf_*` from `libclang_rt.profile-*`.
Other `__llvm_prf_*` sections have similar issues.
Making the references weak can address the problem.
This probably enables the opportunity to drop zero size dummy sections in `InstrProfilingPlatformLinux.c`.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D96936
sys/cdefs.h is a glibc internal header which is not supposed to be included by applications.
(Some libc implementations provide this file for compatibility.)
Android features.h includes sys/cdefs.h, so we can include features.h instead.
This change makes `ninja gwp_asan` build on musl.
D14468 added these dummy sections. This patch adds `__attribute__((used))` so
that when compiled by GCC>=11 or (expected, D96838) Clang>=13 on some ELF platforms,
these sections will get SHF_GNU_RETAIN to make sure they will not be discarded
by ld --gc-sections.
We are trying to get rid of LLD's "__start_/__stop_ references retain C identifier name sections" rule.
If LLD drops the rule in the future (we will retain compatibility for `__llvm_prf_*` for a while),
`__llvm_prf_*` will need to have the SHF_GNU_RETAIN flag, otherwise:
```
// __llvm_prf_cnts/__llvm_prf_data usually exist, but {names,vnds} may not exist.
// Such diagnostics will happen with {cnts,data} as well if no input object file is instrumented.
% clang++ -fprofile-generate a.cc -fuse-ld=lld -Wl,--gc-sections
ld.lld: error: undefined hidden symbol: __start___llvm_prf_names
>>> referenced by InstrProfilingPlatformLinux.c
>>> InstrProfilingPlatformLinux.c.o:(__llvm_profile_begin_names) in archive /tmp/RelA/lib/clang/13.0.0/lib/linux/libclang_rt.profile-x86_64.a
...
```
Differential Revision: https://reviews.llvm.org/D96902
During unit tests, it was observed that crafting an artificially small DSO could cause OOB memory to be accessed. This change fixes that (but again, the affected DSOs are unlikely to ever occur outside unit tests).
Reviewed By: morehouse, charco
Differential Revision: https://reviews.llvm.org/D94507
This fixes the weak_hooks.cpp test on FreeBSD. Since this feature appears
to be supported on almost all platforms, it might also make sense to turn
it into an opt-out list instead of being opt-in.
Reviewed By: krytarowski
Differential Revision: https://reviews.llvm.org/D96255
When compiling with ccache, compiler commands get split into smaller steps
and clang's default -Wunused-command-line-argument complains about unused
include directory arguments. In combination -Werror, compilation aborts.
This patch passes the CMAKE_C_FLAGS into the build script. Configuring with
-DCMAKE_C_FLAGS=-Wno-unused-command-line-argument allows successful testing.
Differential Revision: https://reviews.llvm.org/D96762
If an app mmaps lots of memory, a user mmap may end up
in the tsan region for traces. Shadow for this range
overlaps with shadow for other user regions.
This causes havok: from false positives to crashes.
Don't leave unmapped holes in the traces region.
Reviewed-in: https://reviews.llvm.org/D96697
This change adds additional unit tests for fuzzer::Merger::Parse and fuzzer::Merger::Merge in anticipation of additional changes to the merge control file format to support cross-process fuzzing.
It modifies the parameter handling of Merge slightly in order to make NewFeatures and NewCov consistent with NewFiles; namely, Merge *replaces* the contents of these output parameters rather than accumulating them (thereby fixing a buggy return value).
This is change 1 of (at least) 18 for cross-process fuzzing support.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D94506
Windows' memory unmapping has to be explicit, there is no madvise.
Similarly, re-mapping memory has to be explicit as well. This patch
implements a basic method for remapping memory which was previously
returned to the OS on Windows.
Patch by Matthew G. McGovern and Jordyn Puryear
This is a part of https://reviews.llvm.org/D95835.
The design is based on MSan origin chains.
An 4-byte origin is a hash of an origin chain. An origin chain is a
pair of a stack hash id and a hash to its previous origin chain. 0 means
no previous origin chains exist. We limit the length of a chain to be
16. With origin_history_size = 0, the limit is removed.
The change does not have any test cases yet. The following change
will be adding test cases when the APIs are used.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D96160
https://reviews.llvm.org/D95835 implements origin tracking for DFSan.
It reuses the chained origin depot of MSan.
This change moves the utility to sanitizer_common to share between
MSan and DFSan.
Reviewed-by: eugenis, morehouse
Differential Revision: https://reviews.llvm.org/D96319
GNU binutils accepts only `.arch_extension memtag` while Clang
accepts either that or `.arch_extension mte` to mean the same thing.
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D95996
Adds a new allocation API to GWP-ASan that handles size+alignment
restrictions.
Reviewed By: cryptoad, eugenis
Differential Revision: https://reviews.llvm.org/D94830
This is a part of https://reviews.llvm.org/D95835.
This change is to address two problems
1) When recording stacks in origin tracking, libunwind is not async signal safe. Inside signal callbacks, we need
to use fast unwind. Fast unwind needs threads
2) StackDepot used by origin tracking is not async signal safe, we set a flag per thread inside
a signal callback to prevent from using it.
The thread registration is similar to ASan and MSan.
Related MSan changes are
* 98f5ea0dba
* f653cda269
* 5a7c364343
Some changes in the diff are used in the next diffs
1) The test case pthread.c is not very interesting for now. It will be
extended to test origin tracking later.
2) DFsanThread::InSignalHandler will be used by origin tracking later.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D95963
Switch to new logging api added in [[ https://developer.apple.com/documentation/os/os_log_error | macOS 10.12 ]] that is more memory safe and enables us to label the log messages in the future. Falls back to old API if ran on older OS versions.
Commited by Dan Liew on behalf of Emily Shi.
rdar://25181524
Reviewed By: delcypher, yln
Differential Revision: https://reviews.llvm.org/D95977
We want way to set a path to llvm-symbolizer that isn't relative
to the current working directory; this change adds a variable that
expands to the path relative to the current binary.
This approach came from comments in https://reviews.llvm.org/D93070
Differential Revision: https://reviews.llvm.org/D94563
AsanThread::Destroy implementation expected to be called on
child thread.
I missed authors concern regarding this reviewing D95184.
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D95731
Unwinders (like libc's backtrace()) can call their own locks (like the
libdl lock). We need to let the unwinder release the locks before
forking. Wrap a new lock around the unwinder for atfork protection.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D95889
DFSan uses TLS to pass metadata of arguments and return values. When an
instrumented function accesses the TLS, if a signal callback happens, and
the callback calls other instrumented functions with updating the same TLS,
the TLS is in an inconsistent state after the callback ends. This may cause
either under-tainting or over-tainting.
This fix follows MSan's workaround.
cb22c67a21
It simply resets TLS at restore. This prevents from over-tainting. Although
under-tainting may still happen, a taint flow can be found eventually if we
run a DFSan-instrumented program multiple times. The alternative option is
saving the entire TLS. However the TLS storage takes 2k bytes, and signal calls
could be nested. So it does not seem worth.
This diff fixes sigaction. A following diff will be fixing signal.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D95642
This fixes an apparent oversight in D91156, where the symbol was defined
without the leading underscore, then the visibility was later declared with it.
rdar://73364185
Differential revision: https://reviews.llvm.org/D95639
Fixes the `FastUnwindTest` unit test for RISC-V.
These changes reflect the different stack organization commonly used for
that architecture.
Differential Revision: https://reviews.llvm.org/D90574
D36116 refactored the logic of tests and removed the definition of TARGET_FLAGS, but left one use of it. Restore its definition for that one use, so that an x86_64 test is compiled with -m64.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D93634
This commit accidentally enabled fgetgrent_r() in the msan tests under
FreeBSD, but this function is not supported. Also remove FreeBSD from
the SANITIZER_INTERCEPT_FGETGRENT_R macro.
With D92696, the Scudo Standalone GWP-ASan flag parsing was changed to
the new GWP-ASan optional one. We do not necessarily want this, as this
duplicates flag parsing code in Scudo Standalone when using the
GWP-ASan integration.
This CL reverts the changes within Scudo Standalone, and increases
`MaxFlags` to 20 as an addionnal option got us to the current max.
Differential Revision: https://reviews.llvm.org/D95542
This fixes the implementation for architectures like CHERI with strong
pointer provenance (pointers, and thus uintptr_t, are represented as
hardware capabilities). Specifically, adding two uintptr_t's together
(as is done for `start + length` and `funcStart + landingPad`) has
ambiguous provenance, whereas using a plain integer (such as size_t) for
the offset operand does not. Also, readULEB128 is creating a plain
integer, not a pointer.
On all currently-supported architectures this should be an NFC, as
size_t and uintptr_t end up being the same underlying plain integer
type.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D95537
The `zx_vmar_op_range` allows us to decommit memory pages without
needing a handle to the underlying vmo, as long as we have a handle to
a vmar that contains this mapping. This allows us to implement the
`ReleaseMemoryPagesToOS` function by decommitting the memory using a
handle to the root vmar.
Reviewed By: mcgrathr
Differential Revision: https://reviews.llvm.org/D95384
FreeBSD uses -Ddouble=jagged-little-pill -Dfloat=floaty-mcfloatface to
poison uses of floating point in its standalone environment. It also
deprecates machine/limits.h in favour of sys/limits.h and does not even
provide the former on newer architectures.
This is a cleaner reimplementation of equivalent patches in FreeBSD's
vendored copy of compiler-rt.
Reviewed By: dim
Differential Revision: https://reviews.llvm.org/D95264
zxtest doesn't have `EXPECT_DEATH` and the Scudo unit-tests were
defining it as a no-op.
This enables death tests on Fuchsia by using `ASSERT_DEATH` instead.
I used a lambda to wrap the expressions as this appears to not be
working the same way as `EXPECT_DEATH`.
Additionnally, a death test using `alarm` was failing with the change,
as it's currently not implemented in Fuchsia, so move that test within
a `!SCUDO_FUCHSIA` block.
Differential Revision: https://reviews.llvm.org/D94362
Previously in ASan's `pthread_create` interceptor we would block in the
`pthread_create` interceptor waiting for the child thread to start.
Unfortunately this has bad performance characteristics because the OS
scheduler doesn't know the relationship between the parent and child
thread (i.e. the parent thread cannot make progress until the child
thread makes progress) and may make the wrong scheduling decision which
stalls progress.
It turns out that ASan didn't use to block in this interceptor but was
changed to do so to try to address
http://llvm.org/bugs/show_bug.cgi?id=21621/.
In that bug the problem being addressed was a LeakSanitizer false
positive. That bug concerns a heap object being passed
as `arg` to `pthread_create`. If:
* The calling thread loses a live reference to the object (e.g.
`pthread_create` finishes and the thread no longer has a live
reference to the object).
* Leak checking is triggered.
* The child thread has not yet started (once it starts it will have a
live reference).
then the heap object will incorrectly appear to be leaked.
This bug is covered by the `lsan/TestCases/leak_check_before_thread_started.cpp` test case.
In b029c5101f ASan was changed to block
in `pthread_create()` until the child thread starts so that `arg` is
kept alive for the purposes of leaking check.
While this change "works" its problematic due to the performance
problems it causes. The change is also completely unnecessary if leak
checking is disabled (via detect_leaks runtime option or
CAN_SANITIZE_LEAKS compile time config).
This patch does two things:
1. Takes a different approach to solving the leak false positive by
making LSan's leak checking mechanism treat the `arg` pointer of
created but not started threads as reachable. This is done by
implementing the `ForEachRegisteredThreadContextCb` callback for
ASan.
2. Removes the blocking behaviour in the ASan `pthread_create`
interceptor.
rdar://problem/63537240
Differential Revision: https://reviews.llvm.org/D95184
This mechanism is intended to provide a way to treat the `arg` pointer
of a created (but not yet started) thread as reachable. In future
patches this will be implemented in `GetAdditionalThreadContextPtrs`.
A separate implementation of `GetAdditionalThreadContextPtrs` exists
for ASan and LSan runtimes because they need to be implemented
differently in future patches.
rdar://problem/63537240
Differential Revision: https://reviews.llvm.org/D95183
`GetMacosAlignedVersion()` fails for ASan-ified launchd because the
sanitizer initialization code runs before `sysctl` has been setup by
launchd. In this situation, `sysctl kern.osproductversion` returns a
non-empty string that does not match our expectations of a
well-formatted version string.
Retrieving the kernel version (via `sysctl kern.osrelease`) still works,
so we can use it to add a fallback for this corner case.
Differential Revision: https://reviews.llvm.org/D94190
In preparation for the inbuilt options parser, this is a minor refactor
of optional components including:
- Putting certain optional elements in the right header files,
according to their function and their dependencies.
- Cleaning up some old and mostly-dead code.
- Moving some functions into anonymous namespaces to prevent symbol
export.
Reviewed By: cryptoad, eugenis
Differential Revision: https://reviews.llvm.org/D94117
When adding this function in https://reviews.llvm.org/D68794 I did not
notice that internal_prctl has the API of the syscall to prctl rather
than the API of the glibc (posix) wrapper.
This means that the error return value is not necessarily -1 and that
errno is not set by the call.
For InitPrctl this means that the checks do not catch running on a
kernel *without* the required ABI (not caught since I only tested this
function correctly enables the ABI when it exists).
This commit updates the two calls which check for an error condition to
use `internal_iserror`. That function sets a provided integer to an
equivalent errno value and returns a boolean to indicate success or not.
Tested by running on a kernel that has this ABI and on one that does
not. Verified that running on the kernel without this ABI the current
code prints the provided error message and does not attempt to run the
program. Verified that running on the kernel with this ABI the current
code does not print an error message and turns on the ABI.
All tests done on an AArch64 Linux machine.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D94425
There could be some mis-alignments when copying origins not aligned.
I believe inaligned memcpy is rare so the cases do not matter too much
in practice.
1) About the change at line 50
Let dst be (void*)5,
then d=5, beg=4
so we need to write 3 (4+4-5) bytes from 5 to 7.
2) About the change around line 77.
Let dst be (void*)5,
because of lines 50-55, the bytes from 5-7 were already writen.
So the aligned copy is from 8.
Reviewed-by: eugenis
Differential Revision: https://reviews.llvm.org/D94552
This function is called by the __atomic_is_lock_free() builtin if the value
cannot be resolved to true at compile time. Lack of this function is
causing the non-lockfree atomics tests in libc++ to not be run (see D91911)
This function is also added in D85044, but that review also adds support
for using lock-free atomics in more cases, whereas this is a minimal change
that just adds __atomic_is_lock_free() for the implementation of atomic.c.
Reviewed By: ldionne
Differential Revision: https://reviews.llvm.org/D92302
On Android, when the builtins are linked into a binary, they are
typically linked using -Wl,--exclude-libs so that the symbols aren't
reexported. For the NDK, compiler-rt's default behavior (build the
builtins archive with -fvisibility=hidden) is better so that builtins
are hidden even without -Wl,--exclude-libs.
Android needs the builtins with non-hidden symbols only for a special
case: for backwards compatibility with old binaries, the libc.so and
libm.so DSOs in the platform need to export some builtins for arm32 and
32-bit x86. See D56977.
Control the behavior with a new flag,
`COMPILER_RT_BUILTINS_HIDE_SYMBOLS`, that behaves similarly to the
`*_HERMETIC_STATIC_LIBRARY` in libunwind/libcxx/libcxxabi, so that
Android can build a special builtins variant for libc.so/libm.so.
Unlike the hermetic flags for other projects, this new flag is enabled
by default.
Reviewed By: compnerd, MaskRay
Differential Revision: https://reviews.llvm.org/D93431
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are replaced
with the more appropriate `#if SANITIZER_GLIBC` (the headers are glibc
extensions, not specific to Linux (i.e. if we ever support GNU/kFreeBSD
or Hurd, the guards may automatically work)).
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are refined
with `#if SANITIZER_GLIBC` (the definitions are available on Linux glibc,
but may not be available on other libc (e.g. musl) implementations).
This patch makes `ninja asan cfi lsan msan stats tsan ubsan xray` build on a musl based Linux distribution (apk install musl-libintl)
Notes about disabled interceptors for musl:
* `SANITIZER_INTERCEPT_GLOB`: musl does not implement `GLOB_ALTDIRFUNC` (GNU extension)
* Some ioctl structs and functions operating on them.
* `SANITIZER_INTERCEPT___PRINTF_CHK`: `_FORTIFY_SOURCE` functions are GNU extension
* `SANITIZER_INTERCEPT___STRNDUP`: `dlsym(RTLD_NEXT, "__strndup")` errors so a diagnostic is formed. The diagnostic uses `write` which hasn't been intercepted => SIGSEGV
* `SANITIZER_INTERCEPT_*64`: the `_LARGEFILE64_SOURCE` functions are glibc specific. musl does something like `#define pread64 pread`
* Disabled `msg_iovlen msg_controllen cmsg_len` checks: musl is conforming while many implementations (Linux/FreeBSD/NetBSD/Solaris) are non-conforming. Since we pick the glibc definition, exclude the checks for musl (incompatible sizes but compatible offsets)
Pass through LIBCXX_HAS_MUSL_LIBC to make check-msan/check-tsan able to build libc++ (https://bugs.llvm.org/show_bug.cgi?id=48618).
Many sanitizer features are available now.
```
% ninja check-asan
(known issues:
* ASAN_OPTIONS=fast_unwind_on_malloc=0 odr-violations hangs
)
...
Testing Time: 53.69s
Unsupported : 185
Passed : 512
Expectedly Failed: 1
Failed : 12
% ninja check-ubsan check-ubsan-minimal check-memprof # all passed
% ninja check-cfi
( all cross-dso/)
...
Testing Time: 8.68s
Unsupported : 264
Passed : 80
Expectedly Failed: 8
Failed : 32
% ninja check-lsan
(With GetTls (D93972), 10 failures)
Testing Time: 4.09s
Unsupported: 7
Passed : 65
Failed : 22
% ninja check-msan
(Many are due to functions not marked unsupported.)
Testing Time: 23.09s
Unsupported : 6
Passed : 764
Expectedly Failed: 2
Failed : 58
% ninja check-tsan
Testing Time: 23.21s
Unsupported : 86
Passed : 295
Expectedly Failed: 1
Failed : 25
```
Used `ASAN_OPTIONS=verbosity=2` to verify there is no unneeded interceptor.
Partly based on Jari Ronkainen's https://reviews.llvm.org/D63785#1921014
Note: we need to place `_FILE_OFFSET_BITS` above `#include "sanitizer_platform.h"` to avoid `#define __USE_FILE_OFFSET64 1` in 32-bit ARM `features.h`
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D93848
Suppress the warning:
```
'fake_shared_weak_count' has virtual functions but non-virtual destructor [-Wnon-virtual-dtor]
```
The warning has been recently enabled [1], but the associated cleanup
missed this instance in Darwin code [2].
[1] 9c31e12609
[2] d48f2d7c02
Differential Revision: https://reviews.llvm.org/D94139
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are replaced
with the more appropriate `#if SANITIZER_GLIBC` (the headers are glibc
extensions, not specific to Linux (i.e. if we ever support GNU/kFreeBSD
or Hurd, the guards may automatically work)).
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are refined
with `#if SANITIZER_GLIBC` (the definitions are available on Linux glibc,
but may not be available on other libc (e.g. musl) implementations).
This patch makes `ninja asan cfi msan stats tsan ubsan xray` build on a musl based Linux distribution (apk install musl-libintl)
Notes about disabled interceptors for musl:
* `SANITIZER_INTERCEPT_GLOB`: musl does not implement `GLOB_ALTDIRFUNC` (GNU extension)
* Some ioctl structs and functions operating on them.
* `SANITIZER_INTERCEPT___PRINTF_CHK`: `_FORTIFY_SOURCE` functions are GNU extension
* `SANITIZER_INTERCEPT___STRNDUP`: `dlsym(RTLD_NEXT, "__strndup")` errors so a diagnostic is formed. The diagnostic uses `write` which hasn't been intercepted => SIGSEGV
* `SANITIZER_INTERCEPT_*64`: the `_LARGEFILE64_SOURCE` functions are glibc specific. musl does something like `#define pread64 pread`
* Disabled `msg_iovlen msg_controllen cmsg_len` checks: musl is conforming while many implementations (Linux/FreeBSD/NetBSD/Solaris) are non-conforming. Since we pick the glibc definition, exclude the checks for musl (incompatible sizes but compatible offsets)
Pass through LIBCXX_HAS_MUSL_LIBC to make check-msan/check-tsan able to build libc++ (https://bugs.llvm.org/show_bug.cgi?id=48618).
Many sanitizer features are available now.
```
% ninja check-asan
(known issues:
* ASAN_OPTIONS=fast_unwind_on_malloc=0 odr-violations hangs
)
...
Testing Time: 53.69s
Unsupported : 185
Passed : 512
Expectedly Failed: 1
Failed : 12
% ninja check-ubsan check-ubsan-minimal check-memprof # all passed
% ninja check-cfi
( all cross-dso/)
...
Testing Time: 8.68s
Unsupported : 264
Passed : 80
Expectedly Failed: 8
Failed : 32
% ninja check-lsan
(With GetTls (D93972), 10 failures)
Testing Time: 4.09s
Unsupported: 7
Passed : 65
Failed : 22
% ninja check-msan
(Many are due to functions not marked unsupported.)
Testing Time: 23.09s
Unsupported : 6
Passed : 764
Expectedly Failed: 2
Failed : 58
% ninja check-tsan
Testing Time: 23.21s
Unsupported : 86
Passed : 295
Expectedly Failed: 1
Failed : 25
```
Used `ASAN_OPTIONS=verbosity=2` to verify there is no unneeded interceptor.
Partly based on Jari Ronkainen's https://reviews.llvm.org/D63785#1921014
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D93848
before:
$ echo 'int main(){}'|clang -g -fsanitize=leak -x c++ -;./a.out
Tracer caught signal 11: addr=0x7f4f73da5f40 pc=0x4222c8 sp=0x7f4f72cffd40
==1164171==LeakSanitizer has encountered a fatal error.
==1164171==HINT: For debugging, try setting environment variable LSAN_OPTIONS=verbosity=1:log_threads=1
==1164171==HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)
$ _
after:
$ echo 'int main(){}'|clang -g -fsanitize=leak -x c++ -;./a.out)
$ _
I haven't verified the size cannot be affected by Fedora patches of
upstream glibc-2.32 - but I do not expect upstream glibc-2.32 would have
the last sizes `(1216, 2304)` from 2013 around glibc-2.12.
Differential Revision: https://reviews.llvm.org/D93386
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are replaced
with the more appropriate `#if SANITIZER_GLIBC` (the headers are glibc
extensions, not specific to Linux (i.e. if we ever support GNU/kFreeBSD
or Hurd, the guards may automatically work)).
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are refined
with `#if SANITIZER_GLIBC` (the definitions are available on Linux glibc,
but may not be available on other libc (e.g. musl) implementations).
This patch makes `ninja asan cfi msan stats tsan ubsan xray` build on a musl based Linux distribution (apk install musl-libintl)
Notes about disabled interceptors for musl:
* `SANITIZER_INTERCEPT_GLOB`: musl does not implement `GLOB_ALTDIRFUNC` (GNU extension)
* Some ioctl structs and functions operating on them.
* `SANITIZER_INTERCEPT___PRINTF_CHK`: `_FORTIFY_SOURCE` functions are GNU extension
* `SANITIZER_INTERCEPT___STRNDUP`: `dlsym(RTLD_NEXT, "__strndup")` errors so a diagnostic is formed. The diagnostic uses `write` which hasn't been intercepted => SIGSEGV
* `SANITIZER_INTERCEPT_*64`: the `_LARGEFILE64_SOURCE` functions are glibc specific. musl does something like `#define pread64 pread`
* Disabled `msg_iovlen msg_controllen cmsg_len` checks: musl is conforming while many implementations (Linux/FreeBSD/NetBSD/Solaris) are non-conforming. Since we pick the glibc definition, exclude the checks for musl (incompatible sizes but compatible offsets)
Pass through LIBCXX_HAS_MUSL_LIBC to make check-msan/check-tsan able to build libc++ (https://bugs.llvm.org/show_bug.cgi?id=48618).
Many sanitizer features are available now.
```
% ninja check-asan
(known issues:
* ASAN_OPTIONS=fast_unwind_on_malloc=0 odr-violations hangs
)
...
Testing Time: 53.69s
Unsupported : 185
Passed : 512
Expectedly Failed: 1
Failed : 12
% ninja check-ubsan check-ubsan-minimal check-memprof # all passed
% ninja check-cfi
( all cross-dso/)
...
Testing Time: 8.68s
Unsupported : 264
Passed : 80
Expectedly Failed: 8
Failed : 32
% ninja check-msan
(Many are due to functions not marked unsupported.)
Testing Time: 23.09s
Unsupported : 6
Passed : 764
Expectedly Failed: 2
Failed : 58
% ninja check-tsan
Testing Time: 23.21s
Unsupported : 86
Passed : 295
Expectedly Failed: 1
Failed : 25
```
Used `ASAN_OPTIONS=verbosity=2` to verify no unneeded interceptors.
Partly based on Jari Ronkainen's https://reviews.llvm.org/D63785#1921014
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D93848
This makes suppression list to work similar to __lsan_ignore_object.
Existing behavior was inconsistent and very inconvenient for complex
data structures.
Example:
struct B;
struct A { B* ptr; };
A* t = makeA();
t->ptr = makeB();
Before the patch: if makeA suppressed by suppression file, lsan will
still report the makeB() leak, so we need two suppressions.
After the patch: a single makeA suppression is enough (the same as a
single __lsan_ignore_object(t)).
Differential Revision: https://reviews.llvm.org/D93884
This makes `PickValueInArray` work for `std::array<T, s>` (C++11). I've also tested the C++17 `std::array` (with compiler-deduced template parameters)
```
Author:
MarcoFalke <falke.marco@gmail.com>
```
Reviewed By: Dor1s
Differential Revision: https://reviews.llvm.org/D93412
rL254966 added `--sysroot=.` to prevent accidental including system headers.
It caused hassle to FreeBSD (D17383)/NetBSD. The next problem is that
we want to include `features.h` (usually `/usr/include/features.h`) to detect `__GLIBC__`.
At this point it seems that `--sysroot=.` adds lots of inconvenience so we disable it for now.
If there is a better way preventing accidental system header inclusion we can consider it again.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D93921
The primary and secondary allocators will need to share this bit,
so move the management of the bit to the combined allocator and
make useMemoryTagging() a free function.
Differential Revision: https://reviews.llvm.org/D93730
Kernel support for MTE has been released in Linux 5.10. This means
that it is a stable API and we no longer need to make the support
conditional on a macro. We do need to provide conditional definitions
of the new macros though in order to avoid a dependency on new
kernel headers.
Differential Revision: https://reviews.llvm.org/D93513
canAllocate() does not take into account the header size so it does
not return the right answer in borderline cases. There was already
code handling this correctly in isTaggedAllocation() so split it out
into a separate function and call it from the test.
Furthermore the test was incorrect when MTE is enabled because MTE
does not pattern fill primary allocations. Fix it.
Differential Revision: https://reviews.llvm.org/D93437
Initially we were avoiding the release of smaller size classes due to
the fact that it was an expensive operation, particularly on 32-bit
platforms. With a lot of batches, and given that there are a lot of
blocks per page, this was a lengthy operation with little results.
There has been some improvements since then to the 32-bit release,
and we still have some criterias preventing us from wasting time
(eg, 9x% free blocks in the class size, etc).
Allowing to release blocks < 128 bytes helps in situations where a lot
of small chunks would not have been reclaimed if not for a forced
reclaiming.
Additionally change some `CHECK` to `DCHECK` and rearrange a bit the
code.
I didn't experience any regressions in my benchmarks.
Differential Revision: https://reviews.llvm.org/D93141
...where the name of that variable defined in
compiler-rt/lib/builtins/cpu_model.c is decorated with a leading underscore
Differential Revision: https://reviews.llvm.org/D93390
`;` is the default comment marker, which is also used by powerpc*-*-elf target triples.
`@` is the comment marker of powerpc*-*-darwin but the Darwin support has been deleted for PowerPC (D72063).
`%%` is the statement separator used by aarch64-*-darwin (see AArch64MCAsmInfoDarwin, it uses `;` as the comment marker, which is different from most other targets)
Reviewed By: tambre
Differential Revision: https://reviews.llvm.org/D93378
aa772fc85e (D92530) has landed fixing relocations on Darwin.
3000c19df6 (D93236) has landed working around an assembly parser bug on Darwin.
Previous quick-fix d9697c2e6b (D93198) included in this commit.
Invoking the preprocessor ourselves is fragile and would require us to replicate CMake's handling of definitions, compiler flags, etc for proper compatibility.
In my toolchain builds this notably resulted in a bunch of warnings from unused flags as my CMAKE_C_FLAGS includes CPU-specific optimization options.
Notably this part was already duplicating the logic for VISIBILITY_HIDDEN define.
Instead, symlink the files and set the proper set of defines on each.
This should also be faster as we avoid invoking the compiler multiple times.
Fixes https://llvm.org/PR48494
Differential Revision: https://reviews.llvm.org/D93278
Put .cfi_startproc on a new line to avoid hitting the assembly parser bug in MasmParser::parseDirectiveCFIStartProc().
Reviewed By: tambre
Differential Revision: https://reviews.llvm.org/D93236
Make these arguments named constants in the Config class instead
of being positional arguments to MapAllocatorCache. This makes the
configuration easier to follow.
Eventually we should follow suit with the other classes but this is
a start.
Differential Revision: https://reviews.llvm.org/D93251
We currently do this for SANITIZER_IOS, which includes devices *and* simulators. This change opts out the check for simulators to unify the behavior with macOS, because VM size is really a property of the host OS, and not the simulator.
<rdar://problem/72129387>
Differential Revision: https://reviews.llvm.org/D93140
aa772fc85e (D92530) has landed fixing Apple builds.
Previous quick-fix d9697c2e6b (D93198) included in this commit.
Invoking the preprocessor ourselves is fragile and would require us to replicate CMake's handling of definitions, compiler flags, etc for proper compatibility.
In my toolchain builds this notably resulted in a bunch of warnings from unused flags as my CMAKE_C_FLAGS includes CPU-specific optimization options.
Notably this part was already duplicating the logic for VISIBILITY_HIDDEN define.
Instead, symlink the files and set the proper set of defines on each.
This should also be faster as we avoid invoking the compiler multiple times.
Fixes https://llvm.org/PR48494
Differential Revision: https://reviews.llvm.org/D93211
Invoking the preprocessor ourselves is fragile and would require us to replicate CMake's handling of definitions, compiler flags, etc for proper compatibility.
In my toolchain builds this notably resulted in a bunch of warnings from unused flags as my CMAKE_C_FLAGS includes CPU-specific optimization options.
Notably this part was already duplicating the logic for VISIBILITY_HIDDEN define.
Instead, symlink the files and set the proper set of defines on each.
This should also be faster as we avoid invoking the compiler multiple times.
Fixes https://llvm.org/PR48494
Reviewed By: ilinpv
Differential Revision: https://reviews.llvm.org/D93178
MSan uses 77 as exit code since it appeared with c5033786ba ("[msan]
MemorySanitizer runtime."). However, Test runners like the one from
Meson use the GNU standard approach where a exit code of 77 signals
that the test should be skipped [1]. As a result Meson's test runner
reports tests as skipped if MSan is enabled and finds issues:
build $ meson test
ninja: Entering directory `/home/user/code/project/build'
ninja: no work to do.
1/1 PROJECT:all / SimpleTest SKIP 0.09s
I could not find any rationale why 77 was initially chosen, and I
found no other clang sanitizer that uses this value as exit
code. Hence I believe it is safe to change this to a safe
default. You can restore the old behavior by setting the environment
variable MSAN_OPTIONS to "exitcode=77", e.g.
export MSAN_OPTIONS="exitcode=77"
1: https://mesonbuild.com/Unit-tests.html#skipped-tests-and-hard-errors
Reviewed By: #sanitizers, eugenis
Differential Revision: https://reviews.llvm.org/D92490
The wrapper clears shadow for addr and addrlen when written to.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D93046