Fix D98289 so that it works even for 2nd..nth compilation unit
(.debug_rnglists).
Reviewed By: dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D106466
On aarch64 a two instruction sequence is used to calculate a
pc-relative address, add some state to the DisassemblerLLVMC
symbolicator so it can track the necessary data across the
two instructions and compute the address being calculated.
Differential Revision: https://reviews.llvm.org/D107213
rdar://49119253
Follow up on https://reviews.llvm.org/D105741
- Add new test that exhaustively checks the output file's content
- Fix typos in documentation and other minor fixes
Reviewed By: wallace
Original Author: jj10306
Differential Revision: https://reviews.llvm.org/D107674
These two tests, TestSkinnyCorefile.py and TestStackCorefile.py,
require a new debugserver on darwin systems to run correctly; for now,
skip them if the system debugserver is in use. There's no easy way to
test if the debugserver being used supports either of these memory
region info features. For end users, the fallback will be a full
corefile and that's not the worst thing, but for the tests it is a
problem.
Add a field to the qMemoryRegionInfo packet where the remote stub
can describe the type of memory -- heap, stack. Keep track of
memory regions that are stack memory in lldb. Add a new "--style
stack" to process save-core to request that only stack memory be
included in the corefile.
Differential Revision: https://reviews.llvm.org/D107625
Skeleton vs. DWO units mismatch has been fixed in D106270. As they both
have type DWARFUnit it is a bit difficult to debug. So it is better to
make it safe against future changes.
Reviewed By: kimanh, clayborg
Differential Revision: https://reviews.llvm.org/D107659
When going through the CU entries in the name index,
make sure to compare the name entry's CU
offset against the skeleton CU's offset.
Previously there would be a mismatch, since the
wrong offset was compared, and thus no suitable
entry was found.
Reviewed By: jankratochvil
Differential Revision: https://reviews.llvm.org/D106270
Use hexadecimal numbers rather than decimal in various vFile packets
in order to fix compatibility with gdbserver. This also changes the few
custom LLDB packets -- while technically they do not have to be changed,
it is easier to use the same syntax consistently across LLDB.
Differential Revision: https://reviews.llvm.org/D107475
Sync the mode constants used to drive vFile:open requests with these
used by GDB and defined for the gdb remote protocol. This makes it
possible to use 'platform file open' after connecting to gdbremote
server (and to some degree to operate on the open file modulo other
incompatibilities).
Differential Revision: https://reviews.llvm.org/D106985
Modify OpenOptions enum to open the future path into synchronizing
vFile:open bits with GDB. Currently, LLDB and GDB use different flag
models effectively making it impossible to match bits. Notably, LLDB
uses two bits to indicate read and write status, and uses union of both
for read/write. GDB uses a value of 0 for read-only, 1 for write-only
and 2 for read/write.
In order to future-proof the code for the GDB variant:
1. Add a distinct eOpenOptionReadWrite constant to be used instead
of (eOpenOptionRead | eOpenOptionWrite) when R/W access is required.
2. Rename eOpenOptionRead and eOpenOptionWrite to eOpenOptionReadOnly
and eOpenOptionWriteOnly respectively, to make it clear that they
do not mean to be combined and require update to all call sites.
3. Use the intersection of all three flags when matching against
the three possible values.
This commit does not change the actual bits used by LLDB.
Differential Revision: https://reviews.llvm.org/D106984
Move Objective-C constants into ObjCConstants.h and share them between
Cocoa and AppleObjCTypeEncodingParser.
Differential revision: https://reviews.llvm.org/D107679
Upstream support for NSConstantArray, NSConstantIntegerNumber,
NSConstant{Float,Double}Number and NSConstantDictionary.
We would've upstreamed this earlier but testing it requires
-fno-constant-nsnumber-literals, -fno-constant-nsarray-literals and
-fno-constant-nsdictionary-literals which haven't been upstreamed yet.
As a temporary workaround use the system compiler (xcrun clang) for the
constant variant of the tests.
I'm just upstreaming this. The patch and the tests were all authored by
Fred Riss.
Differential revision: https://reviews.llvm.org/D107660
This reverts commit 34d78b6a67.
This breaks build bots witha missing file:
/home/worker/2.0.1/lldb-x86_64-debian/llvm-project/lldb/source/Plugins/Language/ObjC/Cocoa.cpp:10:10: fatal error: 'objc/runtime.h' file not found
The pointer to the dyld trie data structure which lldb needs to parse to get
"trampoline kinds" on Darwin used to be a field in the LC_DYLD_INFO load command. A
new load command was added recently dedicated to this purpose: LC_DYLD_EXPORTS_TRIE.
The format of the trie did not change, however. So all we have to do is use the new
command if present. The commands are supposed to be mutually exclusive, so I added
an lldb_assert to warn if they are not.
Differential Revision: https://reviews.llvm.org/D107673
Upstream support for NSConstantArray, NSConstantIntegerNumber,
NSConstant{Float,Double}Number and NSConstantDictionary.
We would've upstreamed this earlier but testing it requires
-fno-constant-nsnumber-literals, -fno-constant-nsarray-literals and
-fno-constant-nsdictionary-literals which haven't been upstreamed yet.
As a temporary workaround use the system compiler (xcrun clang) for the
constant variant of the tests.
I'm just upstreaming this. The patch and the tests were all authored by
Fred Riss.
Differential revision: https://reviews.llvm.org/D107660
It looks like recent CoreFoundation builds strip the non-public symbol
that we were looking for to find the 2 boolean "classes". The public
symbol is of course there, and it contains the address of the private
one. If we don't find the private symbol directly, go through a memory
read at the public symbol's location instead.
Rather than passing two booleans around, which is especially error prone
with them being next to each other, use a struct with named fields
instead.
Differential revision: https://reviews.llvm.org/D107295
lldb_private::DataExtractor contains DataBufferSP m_data_sp which is
relatively expensive to copy (due to multi-threading locking).
llvm::DataExtractor does not have this problem as it uses StringRef
instead.
The copy constructor is explicit as otherwise it is easy to make
unintended modification of a local copy instead of a caller's instance
(D107470 but that is llvm::DataExtractor).
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D107485
Summary:
In the spirit of https://reviews.llvm.org/D70846, we only return functions with
matching mangled name from Apple/DebugNamesDWARFIndex::GetFunction if
eFunctionNameTypeFull is requested.
This speeds up lookup in the presence of large amount of class methods of the
same name (a typical examples would be constructors of templates with many
instantiations or overloaded operators).
Reviewers: labath, teemperor
Reviewed By: labath, teemperor
Subscribers: aprantl, arphaman, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73191
This patch fixes the lookup of locations in
.debug_loclists, if they are split in a .dwp file.
Mainly, we need to consider the cu index offsets.
Reviewed By: jankratochvil
Differential Revision: https://reviews.llvm.org/D107161
As pointed out in D107434 by Walter, D103172 also changed two for loops that
were actually not just iterating over some DIEs but also using the iteration
variable later on for some other things. This patch reverts the respective
faulty parts of D103172.
LLVM includes this header unconditionally on all platforms
(including Windows), so this define should no longer be necessary.
No behavior change.
Differential Revision: https://reviews.llvm.org/D107338
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Testcases now require Linux as it is needed for -gsplit-dwarf.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
Update ARMGetSupportedArchitectureAtIndex to consider remote macOS
debugging. Currently, it defaults to an iOS triple when IsHost() returns
false. This fixes TestPlatformSDK.py on Apple Silicon.
Differential revision: https://reviews.llvm.org/D107179
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
The type field is a signed integer.
(https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html)
However it's not packed in the packet in the way
you might think. For example the type -1 should be:
qMemTags:<addr>,<len>:ffffffff
Instead of:
qMemTags:<addr>,<len>:-1
This change makes lldb-server's parsing more strict
and adds more tests to check that we handle negative types
correctly in lldb and lldb-server.
We only support one tag type value at this point,
for AArch64 MTE, which is positive. So this doesn't change
any of those interactions. It just brings us in line with GDB.
Also check that the test target has MTE. Previously
we just checked that we were AArch64 with a toolchain
that supports MTE.
Finally, update the tag type check for QMemTags to use
the same conversion steps that qMemTags now does.
Using static_cast can invoke UB and though we do do a limit
check to avoid this, I think it's clearer with the new method.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D104914
Renamed language standard from openclcpp to openclcpp10.
Added new std values i.e. '-cl-std=clc++1.0' and
'-cl-std=CLC++1.0'.
Patch by Topotuna (Justas Janickas)!
Differential Revision: https://reviews.llvm.org/D106266
The only remaining plugin dependency in Mangled is CPlusPlusLanguage which it
uses to extract information from C++ mangled names. The static function
GetDemangledNameWithoutArguments is written specifically for C++, so it
would make sense for this specific functionality to live in a
C++-related plugin. In order to keep this functionality in Mangled
without maintaining this dependency, I added
`Language::GetDemangledFunctionNameWithoutArguments`.
Differential Revision: https://reviews.llvm.org/D105215
If we succeed at gathering global variables for a compile
unit, there is no need to fallback to generating a manual index.
Reviewed By: jankratochvil
Differential Revision: https://reviews.llvm.org/D106355
In the latest Linux kernels synchronous tag faults
include the tag bits in their address.
This change adds logical and allocation tags to the
description of synchronous tag faults.
(asynchronous faults have no address)
Process 1626 stopped
* thread #1, name = 'a.out', stop reason = signal SIGSEGV: sync tag check fault (fault address: 0x900fffff7ff9010 logical tag: 0x9 allocation tag: 0x0)
This extends the existing description and will
show as much as it can on the rare occasion something
fails.
This change supports AArch64 MTE only but other
architectures could be added by extending the
switch at the start of AnnotateSyncTagCheckFault.
The rest of the function is generic code.
Tests have been added for synchronous and asynchronous
MTE faults.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D105178
This diff introduces Hierarchical Trace Representation (HTR) and creates the `thread trace export ctf -f <filename> -t <thread_id>` command to export an Intel PT trace's HTR to Chrome Trace Format (CTF) for visualization.
See `lldb/docs/htr.rst` for context/documentation on HTR.
**Overview of Changes**
- Add HTR documentation (see `lldb/docs/htr.rst`)
- Add HTR structures (layer, block, block metadata)
- Implement "Basic Super Block" HTR pass
- Add 'thread trace export ctf' command to export the HTR of an Intel PT
trace to Chrome Trace Format (CTF)
As this diff is the first iteration of HTR and trace visualization, future diffs will build on this work by generalizing the internal design of HTR and implementing new HTR passes that provide better trace summarization/visualization.
See attached video for an example of Intel PT trace visualization:
{F17851042}
Original Author: jj10306
Submitted by: wallace
Reviewed By: wallace, clayborg
Differential Revision: https://reviews.llvm.org/D105741
This diff introduces Hierarchical Trace Representation (HTR) and creates the `thread trace export ctf -f <filename> -t <thread_id>` command to export an Intel PT trace's HTR to Chrome Trace Format (CTF) for visualization.
See `lldb/docs/htr.rst` for context/documentation on HTR.
**Overview of Changes**
- Add HTR documentation (see `lldb/docs/htr.rst`)
- Add HTR structures (layer, block, block metadata)
- Implement "Basic Super Block" HTR pass
- Add 'thread trace export ctf' command to export the HTR of an Intel PT
trace to Chrome Trace Format (CTF)
As this diff is the first iteration of HTR and trace visualization, future diffs will build on this work by generalizing the internal design of HTR and implementing new HTR passes that provide better trace summarization/visualization.
See attached video for an example of Intel PT trace visualization:
{F17851042}
Original Author: jj10306
Submitted by: wallace
Reviewed By: wallace, clayborg
Differential Revision: https://reviews.llvm.org/D105741
This is a resubmission of https://reviews.llvm.org/D105160 after fixing testing issues.
This fix was created after profiling the target creation of a large C/C++/ObjC application that contained almost 4,000,000 redacted symbol names. The symbol table parsing code was creating names for each of these synthetic symbols and adding them to the name indexes. The code was also adding the object file basename to the end of the symbol name which doesn't allow symbols from different shared libraries to share the names in the constant string pool.
Prior to this fix this was creating 180MB of "___lldb_unnamed_symbol" symbol names and was taking a long time to generate each name, add them to the string pool and then add each of these names to the name index.
This patch fixes the issue by:
not adding a name to synthetic symbols at creation time, and allows name to be dynamically generated when accessed
doesn't add synthetic symbol names to the name indexes, but catches this special case as name lookup time. Users won't typically set breakpoints or lookup these synthetic names, but support was added to do the lookup in case it does happen
removes the object file baseanme from the generated names to allow the names to be shared in the constant string pool
Prior to this fix the startup times for a large application was:
12.5 seconds (cold file caches)
8.5 seconds (warm file caches)
After this fix:
9.7 seconds (cold file caches)
5.7 seconds (warm file caches)
The names of the symbols are auto generated by appending the symbol's UserID to the end of the "___lldb_unnamed_symbol" string and is only done when the name is requested from a synthetic symbol if it has no name.
Differential Revision: https://reviews.llvm.org/D106837
This adds memory tag writing to Process and the
GDB remote code. Supporting work for the
"memory tag write" command. (to follow)
Process WriteMemoryTags is similair to ReadMemoryTags.
It will pack the tags then call DoWriteMemoryTags.
That function will send the QMemTags packet to the gdb-remote.
The QMemTags packet follows the GDB specification in:
https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html#General-Query-Packets
Note that lldb-server will be treating partial writes as
complete failures. So lldb doesn't need to handle the partial
write case in any special way.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D105181
This is implemented using the QMemTags packet, as specified
by GDB in:
https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html#General-Query-Packets
(recall that qMemTags was previously added to read tags)
On receipt of a valid packet lldb-server will:
* align the given address and length to granules
(most of the time lldb will have already done this
but the specification doesn't guarantee it)
* Repeat the supplied tags as many times as needed to cover
the range. (if tags > range we just use as many as needed)
* Call ptrace POKEMTETAGS to write the tags.
The ptrace step will loop just like the tag read does,
until all tags are written or we get an error.
Meaning that if ptrace succeeds it could be a partial write.
So we call it again and if we then get an error, return an error to
lldb.
We are not going to attempt to restore tags after a partial
write followed by an error. This matches the behaviour of the
existing memory writes.
The lldb-server tests have been extended to include read and
write in the same test file. With some updated function names
since "qMemTags" vs "QMemTags" isn't very clear when they're
next to each other.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D105180