Enable reporting fork/vfork events to the server when supported.
At this moment, this is used only to test the server code, as real
client does not report fork-events and vfork-events as supported.
Differential Revision: https://reviews.llvm.org/D100208
Add a NativeDelegate API to pass new processes (forks) to LLGS,
and support detaching them via the 'D' packet. A 'D' packet without
a specific PID detaches all processes, otherwise it detaches either
the specified subprocess or the main process, depending on the passed
PID.
Differential Revision: https://reviews.llvm.org/D100191
Introduce three new stop reasons for fork, vfork and vforkdone events.
This includes server support for serializing fork/vfork events into
gdb-remote protocol. The stop infos for the two base events take a pair
of PID and TID for the newly forked process.
Differential Revision: https://reviews.llvm.org/D100196
Introduce a NativeProcessProtocol API for indicating support for
protocol extensions and enabling them. LLGS calls
GetSupportedExtensions() method on the process factory to determine
which extensions are supported by the plugin. If the future is both
supported by the plugin and reported as supported by the client, LLGS
enables it and reports to the client as supported by the server.
The extension is enabled on the process instance by calling
SetEnabledExtensions() method. This is done after qSupported exchange
(if the debugger is attached to any process), as well as after launching
or attaching to a new inferior.
The patch adds 'fork' extension corresponding to 'fork-events+'
qSupported feature and 'vfork' extension for 'vfork-events+'. Both
features rely on 'multiprocess+' being supported as well.
Differential Revision: https://reviews.llvm.org/D100153
Read the number of addressable bits from the qHostInfo packet and use it
to set the code and data address mask in the process. The data
(addressing_bits) is already present in the packet.
Differential revision: https://reviews.llvm.org/D100520
These were in the shared llgs+platform code, but they only make sense
for llgs (as they deal with how the server reports information about
debugged processes).
Introduce new m_current_process and m_continue_process variables that
keep the pointers to currently selected process. At this moment, this
is equivalent to m_debugged_process_up but it lays foundations for
the future multiprocess support.
Differential Revision: https://reviews.llvm.org/D100256
The original commit was reverted because of the problems it introduced
on Linux. However, FreeBSD should not be affected, so restore that part
and we will address Linux separately.
While at it, remove the dbreg hack as the underlying issue has been
fixed in the FreeBSD kernel and the problem is unlikely to happen
in real life use anyway.
Differential Revision: https://reviews.llvm.org/D98822
Refactor handling qSupported to use a virtual HandleFeatures() method.
The client-provided features are split into an array and passed
to the method. The method returns an array of server features that are
concatenated into the qSupported response to the server.
The base implementation of HandleFeatures()
in GDBRemoteCommunicationServerCommon now includes only flags common
to both platform server and llgs, while llgs-specific flags are inserted
in GDBRemoteCommunicationServerLLGS.
Differential Revision: https://reviews.llvm.org/D100140
Refactor the qSupported handler to split the reply into an array,
and identify features within the array rather than searching the string
for partial matches. While at it, use StringRef.split() to process
the compression list instead of reinventing the wheel.
Switch the arguments to MaybeEnableCompression() to use an ArrayRef
of StringRefs to simplify parameter passing from GetRemoteQSupported().
Differential Revision: https://reviews.llvm.org/D100146
This commit has caused the following tests to be flaky:
TestThreadSpecificBpPlusCondition.py
TestExitDuringExpression.py
The exact cause is not known yet, but since both tests deal with
threads, my guess is it has something to do with the tracking of
creation of new threads (which the commit touches upon).
This reverts the following commits:
d01bff8cbd,
ba62ebc48e,
e761b6b4c5,
a345419ee0.
In all this time, we've never used more than one delegate. The logic to
support multiple delegates is therefore untested, and becomes
particularly unwieldy once we need to support multiple processes.
Just remove it.
This reverts commit 3842de49f6.
It fails to build, with errors such as:
GDBRemoteCommunicationClient.cpp:1005:20:
error: no viable overloaded '='
avail_name = compression;
Refactor the qSupported handler to split the reply into an array,
and identify features within the array rather than searching the string
for partial matches. While at it, use StringRef.split() to process
the compression list instead of reinventing the wheel.
Switch the arguments to MaybeEnableCompression() to use an ArrayRef
of StringRefs to simplify parameter passing from GetRemoteQSupported().
Differential Revision: https://reviews.llvm.org/D100146
Watch for fork(2)/vfork(2) (also fork/vfork-style clone(2) on Linux)
notifications and explicitly detach the forked child process, and add
initial tests for these cases. The code covers FreeBSD, Linux
and NetBSD process plugins. There is no new user-visible functionality
provided -- this change lays foundations over subsequent work on fork
support.
Differential Revision: https://reviews.llvm.org/D98822
Add a minimal support for the multiprocess extension in gdb-remote
client. It accepts PIDs as part of thread-ids, and rejects PIDs that
do not match the current inferior.
Differential Revision: https://reviews.llvm.org/D99603
Fill out ProcessMachCore::DoLoadCore to handle LC_NOTE hints with
a UUID or with a UUID+address, and load the binary at the specified
offset correctly. Add tests for all four combinations. Change
DynamicLoaderStatic to not re-set a Section's load address in the
Target if it's already been specified.
Differential Revision: https://reviews.llvm.org/D99571
rdar://51490545
This reverts commit 71b648f715.
There was a typo in the last commit which was causing LLDB AArch64 Linux
buildbot testsuite failures. Now fixed in current version.
This fixes (works around) two errors with gcc-6.5.
- in the RegisterContext_x86 files, gcc is unable to synthesize a
default constructor -- it thinks it needs to initialize the virtual
base class, even though said classes are abstract. I fix that by
providing a dummy constructor.
- In ReproducerInstrumentationTest, it is not able to deduce that the
TestingRegistry class is movable (it contains a map of unique
pointers). I change the type from Optional<TestingRegistry> to
unique_ptr<TestingRegistry), so that moving is not required
(copying/moving a polymorphic type is not a very good idea in any
case).
This implements the interactive trace start and stop methods.
This diff ended up being much larger than I anticipated because, by doing it, I found that I had implemented in the beginning many things in a non optimal way. In any case, the code is much better now.
There's a lot of boilerplate code due to the gdb-remote protocol, but the main changes are:
- New tracing packets: jLLDBTraceStop, jLLDBTraceStart, jLLDBTraceGetBinaryData. The gdb-remote packet definitions are quite comprehensive.
- Implementation of the "process trace start|stop" and "thread trace start|stop" commands.
- Implementaiton of an API in Trace.h to interact with live traces.
- Created an IntelPTDecoder for live threads, that use the debugger's stop id as checkpoint for its internal cache.
- Added a functionality to stop the process in case "process tracing" is enabled and a new thread can't traced.
- Added tests
I have some ideas to unify the code paths for post mortem and live threads, but I'll do that in another diff.
Differential Revision: https://reviews.llvm.org/D91679
This patch adds two new dynamic register sets for AArch64 MTE and
Pointer Authentication features. These register sets are dynamic and
will only be available if underlying hardware support either of these
features. LLDB will pull in Aux vector information and create register
infos based on that information.
A follow up patch will add a test case to test these feature registers.
Reviewed By: labath, DavidSpickett
Differential Revision: https://reviews.llvm.org/D96460
This is patch adds support for adding dynamic register sets for
AArch64 dynamic features in LLDB. AArch64 has optional features like
SVE, Pointer Authentication and MTE which means LLDB needs to decide
at run time which registers it needs to pull in for the current
executable based on underlying support for a certain feature.
This patch makes necessary adjustments to make way for dynamic
register infos and dynamic register sets.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D96458
As discussed on lldb-dev
<https://lists.llvm.org/pipermail/lldb-dev/2021-March/016777.html> the
mips code is unmaintained and untested. It also carries a lot of
technical debt which is not limited to mips-specific code.
Generic mips support remains (and is going to be used by the upcoming
freebsd code). Resurrecting mips support should be a matter of re-adding
the relevant register context files (while avoiding reintroducing the
debt).
Add a minimal support for the multiprocess extension in lldb-server.
The server indicates support for it via qSupported, and accepts
thread-ids containing a PID. However, it still does not support
debugging more than one inferior, so any other PID value results
in an error.
Differential Revision: https://reviews.llvm.org/D98482
This patch introduces Scripted Processes to lldb.
The goal, here, is to be able to attach in the debugger to fake processes
that are backed by script files (in Python, Lua, Swift, etc ...) and
inspect them statically.
Scripted Processes can be used in cooperative multithreading environments
like the XNU Kernel or other real-time operating systems, but it can
also help us improve the debugger testing infrastructure by writting
synthetic tests that simulates hard-to-reproduce process/thread states.
Although ScriptedProcess is not feature-complete at the moment, it has
basic execution capabilities and will improve in the following patches.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95713
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces Scripted Processes to lldb.
The goal, here, is to be able to attach in the debugger to fake processes
that are backed by script files (in Python, Lua, Swift, etc ...) and
inspect them statically.
Scripted Processes can be used in cooperative multithreading environments
like the XNU Kernel or other real-time operating systems, but it can
also help us improve the debugger testing infrastructure by writting
synthetic tests that simulates hard-to-reproduce process/thread states.
Although ScriptedProcess is not feature-complete at the moment, it has
basic execution capabilities and will improve in the following patches.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95713
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Split out the common base of Linux hardware breakpoint/watchpoint
support for AArch64 into a Utility class, and use it to implement
the matching support on FreeBSD.
Differential Revision: https://reviews.llvm.org/D96548
We have a plugin.process.gdb-remote.packet-timeout setting, which can be
used to control how long the lldb client is willing to wait before
declaring the server side dead. Our test suite makes use of this
feature, and sets the setting value fairly high, as the low default
value can cause flaky tests, particularly on slower bots.
After fixing TestPlatformConnect (one of the few tests exercising the
remote platform capabilities of lldb) in 4b284b9ca, it immediately
started being flaky on the arm bots. It turns out this is because the
packet-timeout setting is not being applied to platform connections.
This patch makes the platform connections also respect the value of this
setting. It also adds a test which checks that the timeout value is
being honored.
Differential Revision: https://reviews.llvm.org/D97769
GDB remote protocol does not specify length of g packet for register read. It depends on remote to include all or exclude certain registers from g packet. In case a register or set of registers is not included as part of g packet then we should fall back to p packet for reading all registers excluded from g packet by remote. This patch adds support for above feature and adds a test-case for the same.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D97498
This patch introduces Scripted Processes to lldb.
The goal, here, is to be able to attach in the debugger to fake processes
that are backed by script files (in Python, Lua, Swift, etc ...) and
inspect them statically.
Scripted Processes can be used in cooperative multithreading environments
like the XNU Kernel or other real-time operating systems, but it can
also help us improve the debugger testing infrastructure by writting
synthetic tests that simulates hard-to-reproduce process/thread states.
Although ScriptedProcess is not feature-complete at the moment, it has
basic execution capabilities and will improve in the following patches.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95713
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Ensure that the llvm::Error instances are always considered handled
by replacing LLDB_LOG with LLDB_LOG_ERROR.
Differential Revision: https://reviews.llvm.org/D96558
The new FreeBSDRemote plugin has reached feature parity with the legacy
plugin, so we can finally remove the latter. The new plugin will
be renamed to FreeBSD in a separate commit to avoid confusion.
Differential Revision: https://reviews.llvm.org/D96555
Introduce a minimal support for the 32-bit powerpc platform. This
includes support for GPR and FPR registers. I also needed to add
software breakpoint opcode for PPC32/PPC64 (big endian), and to fix
offsets in RegisterInfos_powerpc.h (used only by FreeBSD register
context to be globally unique rather than relative to each struct).
Differential Revision: https://reviews.llvm.org/D95947
Introduce mips64 support to match the legacy FreeBSD plugin. Similarly
to the legacy plugin, the code does not support FPU registers at the
moment. The support for them will be submitted separately as it
requires changes to the register context shared by both plugins.
This also includes software single-stepping support that is moved from
the Linux plugin into a common Utility class. The FreeBSD code also
starts explicitly ignoring EINVAL from PT_CLEARSTEP since this is easier
to implement than checking whether hardware single-stepping were used.
Differential Revision: https://reviews.llvm.org/D95802
Native register descriptions in LLDB specify lldb register numbers in
value_regs and invalidate_regs lists. These register numbers may not
match with Process gdb-remote register numbers which are generated by
native process after counting all registers in its register sets.
It was coincidentally not causing any problems as we never came across
a native target with dynamically changing register sets and register
numbers generated by counter matched with LLDB native register numbers.
This came up while testing target AArch64 SVE which can choose register
sets based on underlying hardware.
This patch fixes this behavior and always tries to use remote register
numbers while reading/writing registers over gdb-remote protocol.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D77043
This patch tries to improve memory-read from core files
(in order to improve disassembly functionality).
I am using RHEL 7.7 (linux kernel 3.10) and for a lot of cases,
I was not able to disassemble some functions from backtrace when
debugging crashes from core files. It outputs some dummy code.
The cause of the problem was the fact we are returning all the zeros
from ProcessElfCore::ReadMemory() that is being called within
Disassembler::ParseInstructions() and it disassembles some dummy
opcodes from the buffer returned. Therefore, we are removing zero
bytes filling (padding) completely.
Differential Revision: https://reviews.llvm.org/D93939
Introduce a NativeRegisterContextFreeBSD for 32-bit ARM platform.
This includes support for GPR + VFP registers as exposed by FreeBSD's
ptrace(2) API. Hardware breakpoints or watchpoints are not supported
due to missing kernel support. The code is roughly based on the arm64
context.
It also includes an override for GetSoftwareBreakpointTrapOpcode() based
on the matching code in the PlatformFreeBSD plugin.
Differential Revision: https://reviews.llvm.org/D95696
Introduce arm64 support in the FreeBSDRemote plugin. The code
is roughly based on Linux and reuses the same POSIX RegisterInfos
(but the buffers need to be a few bytes larger due to stricter struct
member alignment in FreeBSD structures -- luckily, they do not affect
the actual member offsets). It supports reading and writing
general-purpose and FPU registers. SVE and hardware watchpoint support
is missing due to the limitations of FreeBSD ptrace(2) API.
Differential Revision: https://reviews.llvm.org/D95297
Implements the required functions on gdb-remote so the '--include-existing' flag of process attach works correctly on Linux.
Reviewed By: labath, clayborg
Differential Revision: https://reviews.llvm.org/D94672
This patch builds on previously submitted SVE patches regarding expedited
register set and per thread register infos. (D82853 D82855 and D82857)
We need to resize SVE register based on value received in expedited list.
Also we need to resize SVE registers when we write vg register using
register write vg command. The resize will result in a updated offset
for all of fpr and sve register set. This offset will be configured
in native register context by RegisterInfoInterface and will also be
be updated on client side in GDBRemoteRegisterContext.
A follow up patch will provide a API test to verify this change.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D82863
This patch pull offset calculation logic out of DynamicRegisterInfo::Finalize
into a separate function. We are going to call this function whenever we
update SVE register sizes.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D94008
In gdb-remote process we have register infos defind as a refernce object of
GDBRemoteDynamicRegisterInfo class. In past register infos have remained
constant througout the life time of a process.
This has changed after AArch64 SVE support where register infos will have
per-thread configuration. SVE registers will have per-thread size and can
be updated while running. This patch aims to build up for that support by
changing GDBRemoteDynamicRegisterInfo reference to a shared pointer deinfed
per-thread.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D82857
When a program maps one of its own modules for reading, and then
crashes, breakpad can emit two entries for that module in the
ModuleList. We have logic to identify this case by checking permissions
on mapped memory regions and report just the module with an executable
region. As currently written, though, the check is asymmetric -- the
entry with the executable region must be the second one encountered for
the preference to kick in.
This change makes the logic symmetric, so that the first-encountered
module will similarly be preferred if it has an executable region but
the second-encountered module does not. This happens for example when
the module in question is the executable itself, which breakpad likes to
report first -- we need to ignore the other entry for that module when
we see it later, even though it may be mapped at a lower virtual
address.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D94629
The test was marked as remote-only, which means it was run ~never, and
accumulated various problems. This commit modifies the test to run
locally and includes a couple of other fixes necessary to make it run:
- moves the "invoke" method into the "Base" test class
- adds []'s around the IP address in a couple more places to make things
work with IPv6
The test is now marked as skipped when running the remote test suite. It
would be possible to make it run both locally and remotely, but this
would require writing a lot special logic for the remote case, and that
is not worth it.
This commit vAttachWait in lldb-server, so --waitfor can be used on
Linux
Reviewed By: labath, clayborg
Differential Revision: https://reviews.llvm.org/D93895
Copy changes, including:
- NativeProcessNetBSD::GetLoadedModuleFileSpec()
and NativeProcessNetBSD::GetFileLoadAddress() methods
- split x86 register sets by CPU extensions
- use offset/size-based register reading/writing
Differential Revision: https://reviews.llvm.org/D93541
As of Linux 5.10, the kernel may report either of the two following
crash reasons:
- SEGV_MTEAERR: async MTE tag check fault
- SEGV_MTESERR: sync MTE tag check fault
Teach LLDB about them.
Differential Revision: https://reviews.llvm.org/D93495
Use RegSetKind enum for register sets everything, rather than int.
Always spell it as 'RegSetKind', without unnecessary 'enum'. Add
missing switch case. While at it, use uint32_t for regnums
consistently.
Differential Revision: https://reviews.llvm.org/D93450
Replace the wrong code in GetRegisterSetCount() with a constant return.
The original code passed register index in place of register set index,
effectively getting always true. Correcting the code to check for
register set existence is not possible as LLDB supports only eliminating
last register sets. Just return the full number for now which should
be NFC.
Differential Revision: https://reviews.llvm.org/D93396
Explicitly consider the libraries reported on the initial rendezvous
breakpoint hit added. This is necessary on FreeBSD since the dynamic
loader issues only a single 'consistent' state rendezvous breakpoint hit
for all the libraries present in DT_NEEDED. It is also helpful on Linux
where it ensures that ld-linux is considered loaded as well
as the shared system libraries reported afterwards.
Reenable memory maps on FreeBSD since this fixed the issue triggered
by them.
Differential Revision: https://reviews.llvm.org/D92187
Copy the Linux implementation of GetLoadedModuleFileSpec()
and GetFileLoadAddress() into NativeProcessFreeBSD. This does not seem
to change anything at the moment but reducing the differences between
the plugins should help us in the long term.
Differential Revision: https://reviews.llvm.org/D92314
Explicitly consider the libraries reported on the initial eTakeSnapshot
action added, through adding them to the added soentry list
in DYLDRendezvous::SaveSOEntriesFromRemote(). This is necessary
on FreeBSD since the dynamic loader issues only a single 'consistent'
state rendezvous breakpoint hit for all the libraries present
in DT_NEEDED (while Linux issues an added-consistent event pair).
Reenable memory maps on FreeBSD since this fixed the issue triggered
by them.
Differential Revision: https://reviews.llvm.org/D92187
This patch carries forward our aim to remove offset field from qRegisterInfo
packets and XML register description. I have created a new function which
returns if offset fields are dynamic meaning client can calculate offset on
its own based on register number sequence and register size. For now this
function only returns true for NativeRegisterContextLinux_arm64 but we can
test this for other architectures and make it standard later.
As a consequence we do not send offset field from lldb-server (arm64 for now)
while other stubs dont have an offset field so it wont effect them for now.
On the client side we have replaced previous offset calculation algorithm
with a new scheme, where we sort all primary registers in increasing
order of remote regnum and then calculate offset incrementally.
This committ also includes a test to verify all of above functionality
on Arm64.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D91241
This came up while putting together our new strategy to create g/G packets
in compliance with GDB RSP protocol where register offsets are calculated in
increasing order of register numbers without any unused spacing.
RegisterInfoPOSIX_arm64::GPR size was being calculated after alignment
correction to 8 bytes which meant there was a 4 bytes unused space between
last gpr (cpsr) and first vector register V. We have put LLVM_PACKED_START
decorator on RegisterInfoPOSIX_arm64::GPR to make sure single byte
alignment is enforced. Moreover we are now doing to use arm64 user_pt_regs
struct defined in ptrace.h for accessing ptrace user registers.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D92063
This patch ovverides GetExpeditedRegisterSet for
NativeRegisterContextLinux_arm64 to send vector granule register in
expedited register set if SVE mode is selected.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D82855
This patch adds capability to introduce a custom expedited register set
in gdb remote. Currently we send register set 0 as expedited register set
but for the case of AArch64 SVE we intend to send additional information
about SVE registers size/offset configuration which can be calculated
from vg register. Therefore we will expedited Vg register in case of
AArch64 is in SVE mode to speedup register configuration calculations.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D82853
Previously we used UINT16_MAX to mean no port/no specifc
port. This leads to confusion because 65535 is a valid
port number.
Instead use an optional. If you want a specific port call
LaunchGDBServer as normal, otherwise pass an empty optional
and it will be set to the port that gets chosen.
(or left empty in the case where we fail to find a port)
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D92035
Previously if you did:
$ lldb-server platform --server <...> --min-gdbserver-port 12346
--max-gdbserver-port 12347
(meaning only use port 12346 for gdbservers)
Then tried to launch two gdbservers on the same connection,
the second one would return port 65535. Which is a real port
number but it actually means lldb-server didn't find one it was
allowed to use.
send packet: $qLaunchGDBServer;<...>
read packet: $pid:1919;port:12346;#c0
<...>
send packet: $qLaunchGDBServer;<...>
read packet: $pid:1927;port:65535;#c7
This situation should be an error even if port 65535 does happen
to be available on the current machine.
To fix this make PortMap it's own class within
GDBRemoteCommunicationServerPlatform.
This almost the same as the old typedef but for
GetNextAvailablePort() returning an llvm::Expected.
This means we have to handle not finding a port,
by returning an error packet.
Also add unit tests for this new PortMap class.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D91634
This patch fixes a minor typo in RegisterContextPOSIXProcessMonitor_arm64
constructor where memset target was wrongly specified as m_fpr instead of
m_gpr_arm64.
Add a 'can_connect' parameter to Process plugin initialization, and use
it to filter plugins to these capable of remote connections. This is
used to prevent 'process connect' from picking up a plugin that can only
be used locally, e.g. the legacy FreeBSD plugin.
Differential Revision: https://reviews.llvm.org/D91810
Restore Linux-alike regset names for AVX/MPX registers
as TestLldbGdbServer seems to depend on them. At the same time, fix
TestRegisters to be aware that they are not available on FreeBSD
and NetBSD, at least until we figure out a better way of reporting
unsupported register sets.
Differential Revision: https://reviews.llvm.org/D91923
Translate between abridged and full ftag values in order to expose
the latter in the gdb-remote protocol while the former are used by
FXSAVE/XSAVE... This matches the gdb behavior.
The Shell/Register tests now rely on the new behavior, and therefore
are run on non-Darwin systems only. The Python (API) test relies
on the legacy behavior, and is run on Darwin only.
Differential Revision: https://reviews.llvm.org/D91504
This extends the "memory region" command to
show tagged regions on AArch64 Linux when the MTE
extension is enabled.
(lldb) memory region the_page
[0x0000fffff7ff8000-0x0000fffff7ff9000) rw-
memory tagging: enabled
This is done by adding an optional "flags" field to
the qMemoryRegion packet. The only supported flag is
"mt" but this can be extended.
This "mt" flag is read from /proc/{pid}/smaps on Linux,
other platforms will leave out the "flags" field.
Where this "mt" flag is received "memory region" will
show that it is enabled. If it is not or the target
doesn't support memory tagging, the line is not shown.
(since majority of the time tagging will not be enabled)
Testing is added for the existing /proc/{pid}/maps
parsing and the new smaps parsing.
Minidump parsing has been updated where needed,
though it only uses maps not smaps.
Target specific tests can be run with QEMU and I have
added MTE flags to the existing helper scripts.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D87442
GDBRemoteCommunicationClient::SendGetSupportedTraceType is checking whether the
response is `!response.IsNormalResponse()` and infers from that that it is an error response.
However, it could be either "unsupported" or "error". If we get an unsupported response,
the code then tries to generate an llvm::Expected from the non-error response which then asserts.
Debugserver doesn't implement `jLLDBTraceSupportedType`, so we get an unsupported response
whenever this function is called on macOS.
This fixes the TestAproposWithProcess on macOS (where the `apropos` command will query
the CommandObjectTraceStart which then sends the trace type query package).
Reviewed By: wallace, shafik
Differential Revision: https://reviews.llvm.org/D91801
Translate between abridged and full ftag values in order to expose
the latter in the gdb-remote protocol while the former are used by
FXSAVE/XSAVE... This matches the gdb behavior.
Differential Revision: https://reviews.llvm.org/D91504
The FXSAVE/XSAVE data can have two different layouts on x86_64. When
called as FXSAVE/XSAVE..., the Instruction Pointer and Address Pointer
registers are reported using a 16-bit segment identifier and a 32-bit
offset. When called as FXSAVE64/XSAVE64..., they are reported using
a complete 64-bit offsets instead.
LLDB has historically followed GDB and unconditionally used to assume
the 32-bit layout, with the slight modification of possibly
using a 32-bit segment register (i.e. extending the register into
the reserved 16 upper bits). When the underlying operating system used
FXSAVE64/XSAVE64..., the pointer was split into two halves,
with the upper half repored as the segment registers. While
reconstructing the full address was possible on the user end (and e.g.
the FPU register tests did that), it certainly was not the most
convenient option.
Introduce a two additional 'fip' and 'fdp' registers that overlap
with 'fiseg'/'fioff' and 'foseg'/'foff' respectively, and report
the complete 64-bit address.
Differential Revision: https://reviews.llvm.org/D91497
Depends on D90490.
The stop command is simple and invokes the new method Trace::StopTracingThread(thread).
On the other hand, the start command works by delegating its implementation to a CommandObject provided by the Trace plugin. This is necessary because each trace plugin needs different options for this command. There's even the chance that a Trace plugin can't support live tracing, but instead supports offline decoding and analysis, which means that "thread trace dump instructions" works but "thread trace start" doest. Because of this and a few other reasons, it's better to have each plugin provide this implementation.
Besides, I'm using the GetSupportedTraceType method introduced in D90490 to quickly infer what's the trace plug-in that works for the current process.
As an implementation note, I moved CommandObjectIterateOverThreads to its header so that I can use it from the IntelPT plugin. Besides, the actual start and stop logic for intel-pt is not part of this diff.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D90729
This moves in the direction of our effort to synchronize register descriptions
between LLDB and GDB xml description. We want to able to send registers in a
way that their offset fields can be re-constructed based on register sizes
in the increasing order of register number.
In context to Arm64 SVE, FPCR and FPSR are same registers in FPU regset and
SVE regset. Previously FPSR/FPCR offset was set at the end of SVE data
because Linux ptrace data placed FPCR and FPSR at the end of SVE register set.
Considering interoperability with other stubs like QEMU and that g packets
should generate register data in increasing order of register numbers. We
have to move FPCR/FPSR offset up to its original location according to
register numbering scheme of ARM64 registers with SVE registers included.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D90741
In our recent discussion we are aiming to make LLDB registers exchange minimum
possible information in qRegisterInfo or XMl register descriptions.
For SVE registers, Z registers are catagorized as primary registers and should
not have any infomration about any pseudo registers. All pseudo registers
should have the information on which primary register they belong to.
This patch removes invalidate_regs list from Z registers and will mitigate its
impact on SVE resize patch in a follow up update.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D91057
Create a helper GetOffsetRegSetData() method to get pointer
to the regset data accounting for the necessary offset. Establish
the offsets in the constructor and store them in the structure. This
avoids having to add new Get*Offset() methods and combines some common
code.
Differential Revision: https://reviews.llvm.org/D91411
Eliminate the remaining swith-case code for register getters,
and migrate YMM registers to regset-oriented model. Since these
registers are recombined from XMM and YMM_Hi128 XSAVE blocks, while LLDB
gdb-server protocol transmits YMM registers whole, the offset-based
model will not work here. Nevertheless, some improvement was possible.
Replace generic 'XSaveRegSet' along with sub-sets for XSAVE components
with 'YMMRegSet' (and more regsets in the future as further components
are implemented). Create a helper GetYMMSplitReg() method that obtains
pointers to the appropriate XMM and YMM_Hi128 blocks to reduce code
duplication.
Differential Revision: https://reviews.llvm.org/D91293