Commit Graph

10733 Commits

Author SHA1 Message Date
Philip Reames 4a3dc7dc9a [SCEV] Fix bug involving zero step and non-invariant RHS in trip count logic
Eli pointed out the issue when reviewing D104140. The max trip count logic makes an assumption that the value of IV changes. When the step is zero, the nowrap fact becomes trivial, and thus there's nothing preventing the loop from being nearly infinite. (The "nearly" part is because mustprogress may disallow an infinite loop while still allowing 999999999 iterations before RHS happens to allow an exit.)

This is very difficult to see in practice. You need a means to produce a loop varying RHS in a mustprogress loop which doesn't allow the loop to be infinite. In most cases, LICM or SCEV are smart enough to remove the loop varying expressions.

Differential Revision: https://reviews.llvm.org/D106327
2021-07-23 15:19:23 -07:00
Mircea Trofin 55e12f7080 [NFC][MLGO] Just use the underlying protobuf object for logging
Avoid buffering just to copy the buffered data, in 'development
mode', when logging. Instead, just populate the underlying protobuf.

Differential Revision: https://reviews.llvm.org/D106592
2021-07-23 10:56:48 -07:00
Serge Pavlov 1c64b5dc5e [ConstantFolding] Fold constrained arithmetic intrinsics
Constfold constrained variants of operations fadd, fsub, fmul, fdiv,
frem, fma and fmuladd.

The change also sets up some means to support for removal of unused
constrained intrinsics. They are declared as accessing memory to model
interaction with floating point environment, so they were not removed,
as they have side effect. Now constrained intrinsics that have
"fpexcept.ignore" as exception behavior are removed if they have no uses.
As for intrinsics that have exception behavior other than "fpexcept.ignore",
they can be removed if it is known that they do not raise floating point
exceptions. It happens when doing constant folding, attributes of such
intrinsic are changed so that the intrinsic is not claimed as accessing
memory.

Differential Revision: https://reviews.llvm.org/D102673
2021-07-23 14:39:51 +07:00
Mircea Trofin df0066a1c9 [NFC][MLGO] Fix vector sizing
The bots only build release mode, and the use of `reserve` instead of
`resize`, while not causing invalid memory accesses, is incorrect.
2021-07-22 13:06:00 -07:00
Joseph Huber 754eb1c210 [OpenMP] Change `__kmpc_free_shared` to include the paired allocation size
This patch changes `__kmpc_free_shared` to take an additional argument
corresponding to the associated allocation's size. This makes it easier to
implement the allocator in the runtime.

Reviewed By: jdoerfert

Differential Revision: https://reviews.llvm.org/D106496
2021-07-21 20:56:21 -04:00
Jacob Hegna cfc4def85d [NFC] Code cleanups in InlineCost.cpp.
- annotate const functions with "const"
 - replace C-style casts with static_cast

Differential Revision: https://reviews.llvm.org/D105362
2021-07-22 00:03:36 +00:00
Kerry McLaughlin be753b207f Revert "[LV] Use lookThroughAnd with logical reductions"
Reverting patch due to buildbot failures.

This reverts commit e22a599672.
2021-07-21 15:16:00 +01:00
Rosie Sumpter 44c9adb414 [LoopFlatten][LoopInfo] Use Loop to identify latch compare instruction
Make getLatchCmpInst non-static and use it in LoopFlatten as a more
robust way of identifying the compare.

Differential Revision: https://reviews.llvm.org/D106256
2021-07-21 10:14:18 +01:00
Kerry McLaughlin e22a599672 [LV] Use lookThroughAnd with logical reductions
If a reduction Phi has a single user which `AND`s the Phi with a type mask,
`lookThroughAnd` will return the user of the Phi and the narrower type represented
by the mask. Currently this is only used for arithmetic reductions, whereas loops
containing logical reductions will create a reduction intrinsic using the widened
type, for example:

  for.body:
    %phi = phi i32 [ %and, %for.body ], [ 255, %entry ]
    %mask = and i32 %phi, 255
    %gep = getelementptr inbounds i8, i8* %ptr, i32 %iv
    %load = load i8, i8* %gep
    %ext = zext i8 %load to i32
    %and = and i32 %mask, %ext
    ...

^ this will generate an and reduction intrinsic such as the following:
    call i32 @llvm.vector.reduce.and.v8i32(<8 x i32>...)

The same example for an add instruction would create an intrinsic of type i8:
    call i8 @llvm.vector.reduce.add.v8i8(<8 x i8>...)

This patch changes AddReductionVar to call lookThroughAnd for other integer
reductions, allowing loops similar to the example above with reductions such
as and, or & xor to vectorize.

Reviewed By: david-arm, dmgreen

Differential Revision: https://reviews.llvm.org/D105632
2021-07-21 09:56:00 +01:00
Sanjay Patel 13302c06cd [ConstantFolding] avoid crashing on a fake math library call
https://llvm.org/PR50960
2021-07-20 18:25:21 -04:00
Jacob Hegna 1f3e90e128 Fix Threshold overwrite bug in the Oz inlining model features.
Differential Revision: https://reviews.llvm.org/D106336
2021-07-20 18:05:06 +00:00
Eli Friedman de3ea51be4 [ScalarEvolution] Refine computeMaxBECountForLT to be accurate in more cases.
Allow arbitrary strides, and make sure we return the correct result when
the backedge-taken count is zero.

Differential Revision: https://reviews.llvm.org/D106197
2021-07-19 15:43:30 -07:00
Philip Reames 4402d0d4fb [SCEV] Add a clarifying comment in howManyLessThans
Wrap semantics are subtle when combined with multiple exits.  This has caused several rounds of confusion during recent reviews, so try to document the subtly distinction between when wrap flags provide <u and <=u facts.
2021-07-19 15:13:48 -07:00
Arthur Eubanks 6cbb35dd3b [NewPM] Bail out of devirtualization wrapper if the current SCC is invalidated
The specific case that triggered this was when inlining a recursive
internal function into itself caused the recursion to go away, allowing
the inliner to mark the function as dead. The inliner marks the SCC as
invalidated but does not provide a new SCC to continue with.

This matches the implementations of ModuleToPostOrderCGSCCPassAdaptor
and CGSCCPassManager.

Fixes PR50363.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D106306
2021-07-19 15:07:30 -07:00
Mircea Trofin 55e2d2060a [MLGO] Use binary protobufs for improved training performance.
It turns out that during training, the time required to parse the
textual protobuf of a training log is about the same as the time it
takes to compile the module generating that log. Using binary protobufs
instead elides that cost almost completely.

Differential Revision: https://reviews.llvm.org/D106157
2021-07-19 13:59:28 -07:00
Mindong Chen e908e063d1 [LoopUtils] Fix incorrect RT check bounds of loop-invariant mem accesses
This fixes the lower and upper bound calculation of a
RuntimeCheckingPtrGroup when it has more than one loop
invariant pointers. Resolves PR50686.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D104148
2021-07-19 19:38:24 +08:00
Nikita Popov 2b17c24a03 [SCEV] Fix unused variable warning (NFC) 2021-07-18 23:12:22 +02:00
Wenlei He 68fa6f7c7c [CSSPGO][NFC] Allow cl::ZeroOrMore for use-iterative-bfi-inference 2021-07-18 13:22:32 -07:00
Eli Friedman 28a3ad3f86 [ScalarEvolution] Remove uses of PointerType::getElementType. 2021-07-18 13:14:33 -07:00
Kazu Hirata 1993b73755 [Analaysis, CodeGen] Remove getHotSucc (NFC)
These functions seem to be unused for at least 5 years.
2021-07-17 07:31:36 -07:00
Eli Friedman cbba71bfb5 [ScalarEvolution] Fix overflow in computeBECount.
The current implementation of computeBECount doesn't account for the
possibility that adding "Stride - 1" to Delta might overflow. For almost
all loops, it doesn't, but it's not actually proven anywhere.

To deal with this, use a variety of tricks to try to prove that the
addition doesn't overflow.  If the proof is impossible, use an alternate
sequence which never overflows.

Differential Revision: https://reviews.llvm.org/D105216
2021-07-16 16:15:18 -07:00
Eli Friedman 5d5b08761f [DependenceAnalysis] Guard analysis using getPointerBase().
D104806 broke some uses of getMinusSCEV() in DependenceAnalysis:
subtraction with different pointer bases returns a SCEVCouldNotCompute.
Make sure we avoid cases involving such subtractions.

Differential Revision: https://reviews.llvm.org/D106099
2021-07-15 14:57:32 -07:00
Philip Reames a99d420a93 [SCEV] Fix unsound reasoning in howManyLessThans
This is split from D105216, it handles only a subset of the cases in that patch.

Specifically, the issue being fixed is that the code incorrectly assumed that (Start-Stide) < End implied that the backedge was taken at least once. This is not true when e.g. Start = 4, Stride = 2, and End = 3. Note that we often do produce the right backedge taken count despite the flawed reasoning.

The fix chosen here is to use an alternate form of uceil (ceiling of unsigned divide) lowering which is safe when max(RHS,Start) > Start - Stride.  (Note that signedness of both max expression and comparison depend on the signedness of the comparison being analyzed, and that overflow in the Start - Stride expression is allowed.)  Note that this is weaker than proving the backedge is taken because it allows start - stride < end < start.  Some cases which can't be proven safe are sent down the generic path, and we do end up generating less optimal expressions in a few cases.

Credit for coming up with the approach goes entirely to Eli.  I just split it off, tweaked the comments a bit, and did some additional testing.

Differential Revision: https://reviews.llvm.org/D105942
2021-07-15 10:32:47 -07:00
Philip Reames 205ed009a4 [SCEV] Handle zero stride correctly in howManyLessThans
This is split from D105216, but the code is hoisted much earlier into
the path where we can actually get a zero stride flowing through. Some
fairly simple proofs handle the cases which show up in practice. The
only test changes are the cases where we really do need a non-zero
divider to produce the right result.

Recommitting with isLoopInvariant() check.

Differential Revision: https://reviews.llvm.org/D105921
2021-07-13 19:14:01 -07:00
Arthur Eubanks 5738819679 Revert "[SCEV] Handle zero stride correctly in howManyLessThans"
This reverts commit 4df591b5c9.

Causes crashes, see comments on D105921.
2021-07-13 17:53:48 -07:00
Eli Friedman bb8c7a980f [ScalarEvolution] Make isKnownNonZero handle more cases.
Using an unsigned range instead of signed ranges is a bit more precise.

Differential Revision: https://reviews.llvm.org/D105941
2021-07-13 15:36:45 -07:00
Philip Reames 4df591b5c9 [SCEV] Handle zero stride correctly in howManyLessThans
This is split from D105216, but the code is hoisted much earlier into the path where we can actually get a zero stride flowing through. Some fairly simple proofs handle the cases which show up in practice. The only test changes are the cases where we really do need a non-zero divider to produce the right result.

Differential Revision: https://reviews.llvm.org/D105921
2021-07-13 13:31:40 -07:00
Philip Reames 087310c71e [SCEV] Strengthen inference of RHS > Start in howManyLessThans
Split off from D105216 to simplify review.  Rewritten with a lambda to be easier to follow.  Comments clarified.

Sorry for no test case, this is tricky to exercise with the current structure of the code.  It's about to be hit more frequently in a follow up patch, and the change itself is simple.
2021-07-13 11:54:07 -07:00
Philip Reames e4b43973fb [ScalarEvolution] Fix overflow when computing max trip counts
This is split from D105216 to reduce patch complexity.  Original code by Eli with very minor modification by me.

The primary point of this patch is to add the getUDivCeilSCEV routine.  I included the two callers with constant arguments as we know those must constant fold even without any of the fancy inference logic.
2021-07-13 10:01:10 -07:00
Nikita Popov 6ac32872ee [Attributes] Replace doesAttrKindHaveArgument() (NFC)
This is now the same as isIntAttrKind(), so use that instead, as
it does not require manual maintenance. The naming is also more
accurate in that both int and type attributes have an argument,
but this method was only targeting int attributes.

I initially wanted to tighten the AttrBuilder assertion, but we
have some in-tree uses that would violate it.
2021-07-12 21:57:26 +02:00
Kazu Hirata 4f94121cce [Analysis] Remove changeCondBranchToUnconditionalTo (NFC)
The last use was removed on Jan 21, 2021 in commit
0895b836d7.
2021-07-10 17:31:43 -07:00
Eli Friedman 882ee7fbd6 Fix buildbot regression from 9c4baf5.
Apparently ScalarEvolution::isImpliedCond tries to truncate a pointer in
some obscure cases. Guard the code with a check for pointers.
2021-07-09 17:54:09 -07:00
Eli Friedman 9c4baf5101 [ScalarEvolution] Strictly enforce pointer/int type rules.
Rules:

1. SCEVUnknown is a pointer if and only if the LLVM IR value is a
   pointer.
2. SCEVPtrToInt is never a pointer.
3. If any other SCEV expression has no pointer operands, the result is
   an integer.
4. If a SCEVAddExpr has exactly one pointer operand, the result is a
   pointer.
5. If a SCEVAddRecExpr's first operand is a pointer, and it has no other
   pointer operands, the result is a pointer.
6. If every operand of a SCEVMinMaxExpr is a pointer, the result is a
   pointer.
7. Otherwise, the SCEV expression is invalid.

I'm not sure how useful rule 6 is in practice.  If we exclude it, we can
guarantee that ScalarEvolution::getPointerBase always returns a
SCEVUnknown, which might be a helpful property. Anyway, I'll leave that
for a followup.

This is basically mop-up at this point; all the changes with significant
functional effects have landed.  Some of the remaining changes could be
split off, but I don't see much point.

Differential Revision: https://reviews.llvm.org/D105510
2021-07-09 17:29:26 -07:00
Nikita Popov 2e3f4694d6 [IR] Add GEPOperator::indices() (NFC)
In order to mirror the GetElementPtrInst::indices() API.

Wanted to use this in the IRForTarget code, and was surprised to
find that it didn't exist yet.
2021-07-09 21:41:20 +02:00
Kevin P. Neal 52900486a1 [FPEnv][InstSimplify] Constrained FP support for NaN
Currently InstructionSimplify.cpp knows how to simplify floating point
instructions that have a NaN operand. It does not know how to handle the
matching constrained FP intrinsic.

This patch teaches it how to simplify so long as the exception handling
is not "fpexcept.strict".

Differential Revision: https://reviews.llvm.org/D103169
2021-07-09 11:26:28 -04:00
Martin Storsjö e479777d3c Revert "[ScalarEvolution] Fix overflow in computeBECount."
This reverts commit 5b350183cd (and
also "[NFC][ScalarEvolution] Cleanup howManyLessThans.",
009436e9c1, to make it apply).

See https://reviews.llvm.org/D105216 for discussion on various
miscompilations caused by that commit.
2021-07-09 14:26:48 +03:00
David Green 38c9a4068d [TTI] Remove IsPairwiseForm from getArithmeticReductionCost
This patch removes the IsPairwiseForm flag from the Reduction Cost TTI
hooks, along with some accompanying code for pattern matching reductions
from trees starting at extract elements. IsPairWise is now assumed to be
false, which was the predominant way that the value was used from both
the Loop and SLP vectorizers. Since the adjustments such as D93860, the
SLP vectorizer has not relied upon this distinction between paiwise and
non-pairwise reductions.

This also removes some code that was detecting reductions trees starting
from extract elements inside the costmodel. This case was
double-counting costs though, adding the individual costs on the
individual instruction _and_ the total cost of the reduction. Removing
it changes the costs in llvm/test/Analysis/CostModel/X86/reduction.ll to
not double count. The cost of reduction intrinsics is still tested
through the various tests in
llvm/test/Analysis/CostModel/X86/reduce-xyz.ll.

Differential Revision: https://reviews.llvm.org/D105484
2021-07-09 11:51:16 +01:00
Bjorn Pettersson 472462c472 [NewPM] Consistently use 'simplifycfg' rather than 'simplify-cfg'
There was an alias between 'simplifycfg' and 'simplify-cfg' in the
PassRegistry. That was the original reason for this patch, which
effectively removes the alias.

This patch also replaces all occurrances of 'simplify-cfg'
by 'simplifycfg'. Reason for choosing that form for the name is
that it matches the DEBUG_TYPE for the pass, and the legacy PM name
and also how it is spelled out in other passes such as
'loop-simplifycfg', and in other options such as
'simplifycfg-merge-cond-stores'.

I for some reason the name should be changed to 'simplify-cfg' in
the future, then I think such a renaming should be more widely done
and not only impacting the PassRegistry.

Reviewed By: aeubanks

Differential Revision: https://reviews.llvm.org/D105627
2021-07-09 09:47:03 +02:00
Eli Friedman 009436e9c1 [NFC][ScalarEvolution] Cleanup howManyLessThans.
In preparation for D104075. Some NFC cleanup, and some test coverage for
planned changes.
2021-07-08 17:56:26 -07:00
Michael Liao 8c7ff9da90 [Metadata] Decorate methods with 'const'. NFC.
- Minor coding style fix.
2021-07-08 14:11:14 -04:00
Eli Friedman 5b350183cd [ScalarEvolution] Fix overflow in computeBECount.
There are two issues with the current implementation of computeBECount:

1. It doesn't account for the possibility that adding "Stride - 1" to
Delta might overflow. For almost all loops, it doesn't, but it's not
actually proven anywhere.
2. It doesn't account for the possibility that Stride is zero. If Delta
is zero, the backedge is never taken; the value of Stride isn't
relevant. To handle this, we have to make sure that the expression
returned by computeBECount evaluates to zero.

To deal with this, add two new checks:

1. Use a variety of tricks to try to prove that the addition doesn't
overflow.  If the proof is impossible, use an alternate sequence which
never overflows.
2. Use umax(Stride, 1) to handle the possibility that Stride is zero.

Differential Revision: https://reviews.llvm.org/D105216
2021-07-08 10:09:55 -07:00
Eli Friedman f5603aa050 [ScalarEvolution] Make sure getMinusSCEV doesn't negate pointers.
Add a function removePointerBase that returns, essentially, S -
getPointerBase(S).  Use it in getMinusSCEV instead of actually
subtracting pointers.

Differential Revision: https://reviews.llvm.org/D105503
2021-07-07 10:27:10 -07:00
Eli Friedman 7ac1c7bead Recommit [ScalarEvolution] Make getMinusSCEV() fail for unrelated pointers.
As part of making ScalarEvolution's handling of pointers consistent, we
want to forbid multiplying a pointer by -1 (or any other value). This
means we can't blindly subtract pointers.

There are a few ways we could deal with this:
1. We could completely forbid subtracting pointers in getMinusSCEV()
2. We could forbid subracting pointers with different pointer bases
(this patch).
3. We could try to ptrtoint pointer operands.

The option in this patch is more friendly to non-integral pointers: code
that works with normal pointers will also work with non-integral
pointers. And it seems like there are very few places that actually
benefit from the third option.

As a minimal patch, the ScalarEvolution implementation of getMinusSCEV
still ends up subtracting pointers if they have the same base.  This
should eliminate the shared pointer base, but eventually we'll need to
rewrite it to avoid negating the pointer base. I plan to do this as a
separate step to allow measuring the compile-time impact.

This doesn't cause obvious functional changes in most cases; the one
case that is significantly affected is ICmpZero handling in LSR (which
is the source of almost all the test changes).  The resulting changes
seem okay to me, but suggestions welcome.  As an alternative, I tried
explicitly ptrtoint'ing the operands, but the result doesn't seem
obviously better.

I deleted the test lsr-undef-in-binop.ll becuase I couldn't figure out
how to repair it to test what it was actually trying to test.

Recommitting with fix to MemoryDepChecker::isDependent.

Differential Revision: https://reviews.llvm.org/D104806
2021-07-06 12:16:05 -07:00
Eli Friedman a6d081b2cb Revert "[ScalarEvolution] Make getMinusSCEV() fail for unrelated pointers."
This reverts commit 74d6ce5d5f.

Seeing crashes on buildbots in MemoryDepChecker::isDependent.
2021-07-06 11:17:13 -07:00
Sanjay Patel 4ec7c02197 [InstSimplify] fix bug in poison propagation for FP ops
If any operand of a math op is poison, that takes
precedence over general undef/NaN.

This should not be visible with binary ops because
it requires 2 constant operands to trigger (and if
both operands of a binop are constant, that should
get handled first in ConstantFolding).
2021-07-06 14:06:50 -04:00
Eli Friedman 74d6ce5d5f [ScalarEvolution] Make getMinusSCEV() fail for unrelated pointers.
As part of making ScalarEvolution's handling of pointers consistent, we
want to forbid multiplying a pointer by -1 (or any other value). This
means we can't blindly subtract pointers.

There are a few ways we could deal with this:
1. We could completely forbid subtracting pointers in getMinusSCEV()
2. We could forbid subracting pointers with different pointer bases
(this patch).
3. We could try to ptrtoint pointer operands.

The option in this patch is more friendly to non-integral pointers: code
that works with normal pointers will also work with non-integral
pointers. And it seems like there are very few places that actually
benefit from the third option.

As a minimal patch, the ScalarEvolution implementation of getMinusSCEV
still ends up subtracting pointers if they have the same base.  This
should eliminate the shared pointer base, but eventually we'll need to
rewrite it to avoid negating the pointer base. I plan to do this as a
separate step to allow measuring the compile-time impact.

This doesn't cause obvious functional changes in most cases; the one
case that is significantly affected is ICmpZero handling in LSR (which
is the source of almost all the test changes).  The resulting changes
seem okay to me, but suggestions welcome.  As an alternative, I tried
explicitly ptrtoint'ing the operands, but the result doesn't seem
obviously better.

I deleted the test lsr-undef-in-binop.ll becuase I couldn't figure out
how to repair it to test what it was actually trying to test.

Differential Revision: https://reviews.llvm.org/D104806
2021-07-06 10:54:41 -07:00
Kerry McLaughlin a7512401e5 [LV] Prevent vectorization with unsupported element types.
This patch adds a TTI function, isElementTypeLegalForScalableVector, to query
whether it is possible to vectorize a given element type. This is called by
isLegalToVectorizeInstTypesForScalable to reject scalable vectorization if
any of the instruction types in the loop are unsupported, e.g:

  int foo(__int128_t* ptr, int N)
    #pragma clang loop vectorize_width(4, scalable)
    for (int i=0; i<N; ++i)
      ptr[i] = ptr[i] + 42;

This example currently crashes if we attempt to vectorize since i128 is not a
supported type for scalable vectorization.

Reviewed By: sdesmalen, david-arm

Differential Revision: https://reviews.llvm.org/D102253
2021-07-06 13:06:21 +01:00
Sanjay Patel 3d3c0ed932 [InstSimplify] fold extractelement of splat with variable extract index
We already have a fold for variable index with constant vector,
but if we can determine a scalar splat value, then it does not
matter whether that value is constant or not.

We overlooked this fold in D102404 and earlier patches,
but the fixed vector variant is shown in:
https://llvm.org/PR50817

Alive2 agrees on that:
https://alive2.llvm.org/ce/z/HpijPC

The same logic applies to scalable vectors.

Differential Revision: https://reviews.llvm.org/D104867
2021-07-05 08:19:40 -04:00
Paul Walker 287d39dd5a [NFC] Fix a few whitespace issues and typos. 2021-07-04 11:49:58 +01:00
Roman Lebedev fc150cecd7
[SimplifyCFG] simplifyUnreachable(): erase instructions iff they are guaranteed to transfer execution to unreachable
This replaces the current ad-hoc implementation,
by syncing the code from InstCombine's implementation in `InstCombinerImpl::visitUnreachableInst()`,
with one exception that here in SimplifyCFG we are allowed to remove EH instructions.

Effectively, this now allows SimplifyCFG to remove calls (iff they won't throw and will return),
arithmetic/logic operations, etc.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D105374
2021-07-03 10:45:44 +03:00
Jacob Hegna 8cc8caa1b1 [MLGO] Update Oz model url. 2021-07-02 17:29:15 +00:00
Jacob Hegna 99f00635d7 Unpack the CostEstimate feature in ML inlining models.
This change yields an additional 2% size reduction on an internal search
binary, and an additional 0.5% size reduction on fuchsia.

Differential Revision: https://reviews.llvm.org/D104751
2021-07-02 16:57:16 +00:00
Sanjay Patel 9eb613b2de [InstSimplify] do not propagate poison from select arm to icmp user
This is the cause of the miscompile in:
https://llvm.org/PR50944

The problem has likely existed for some time, but it was made visible with:
5af8bacc94 ( D104661 )
handleOtherCmpSelSimplifications() assumed it can convert select of
constants to bool logic ops, but that does not work with poison.
We had a very similar construct in InstCombine, so the fix here
mimics the fix there.

The bug is in instsimplify, but I'm not sure how to reproduce it outside of
instcombine. The reason this is visible in instcombine is because we have a
hack (FIXME) to bypass simplification of a select when it has an icmp user:
955f125899/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp (L2632)

So we get to an unusual case where we are trying to simplify an instruction
that has an operand that would have already simplified if we had processed
it in normal order.

Differential Revision: https://reviews.llvm.org/D105298
2021-07-01 17:40:07 -04:00
Florian Hahn dc4299a7f3
[BasicAA] Fix typo ScaleForGDC -> ScaleForGCD. 2021-07-01 09:58:38 +01:00
Florian Hahn e6d22d0174
[BasicAA] Use separate scale variable for GCD.
Use separate variable for adjusted scale used for GCD computations. This
fixes an issue where we incorrectly determined that all indices are
non-negative and returned noalias because of that.

Follow up to 91fa3565da.
2021-06-30 20:04:39 +01:00
Philip Reames 14d8f1546a [SCEV] Fold (0 udiv %x) to 0
We have analogous rules in instsimplify, etc.., but were missing the same in SCEV.  The fold is near trivial, but came up in the context of a larger change.
2021-06-30 08:31:13 -07:00
Jacob Hegna 7b639f5095 [NFC] clang-format on InlineCost.cpp and InlineAdvisor.h. 2021-06-29 18:15:27 +00:00
Florian Hahn 91fa3565da
[BasicAA] Be more careful with modulo ops on VariableGEPIndex.
(V * Scale) % X may not produce the same result for any possible value
of V, e.g. if the multiplication overflows. This means we currently
incorrectly determine NoAlias in some cases.

This patch updates LinearExpression to track whether the expression
has NSW and uses that to adjust the scale used for alias checks.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D99424
2021-06-29 09:22:36 +01:00
Sanjay Patel 7414bbebc2 [Analysis] improve function signature checking for calloc
This would crash later if we thought the parameters were
valid for the standard library call as shown in:
https://llvm.org/PR50846
2021-06-27 08:19:00 -04:00
Eli Friedman 8d5bf0709d [NFC] Prefer ConstantRange::makeExactICmpRegion over makeAllowedICmpRegion
The implementation is identical, but it makes the semantics a bit more
obvious.
2021-06-25 14:43:13 -07:00
Sanjay Patel 1076b6c4f0 [Analysis] use better version of getLibFunc to check for alloc/free calls
There's no reason to use the weaker name-only analysis when we
have a function prototype to check (in fact, we probably should
not even have that name-only function exposed for general use,
but removing it requires auditing all of the callers).

The version of getLibFunc that takes a Function argument also
does some prototype checking to make sure the arguments/return
type match the expected signature of a real library call.

This is NFC-intended because the code in MemoryBuiltins does its
own function signature checking. For now, that means there may
be some redundancy in the checking, but that should not be above
the noise for compile-time. Ideally, we can move the checks to
a single location.

There's still a hole in the logic that allows the example in
https://llvm.org/PR50846 to cause a compiler crash.
2021-06-25 12:14:07 -04:00
Florian Hahn 6478f3fb78
[SCEV] Support single-cond range check idiom in applyLoopGuards.
This patch extends applyLoopGuards to detect a single-cond range check
idiom that InstCombine generates.

It extends applyLoopGuards to detect conditions of the form
(-C1 + X < C2). InstCombine will create this form when combining two
checks of the form (X u< C2 + C1) and (X >=u C1).

In practice, this enables us to correctly compute a tight trip count
bounds for code as in the function below. InstCombine will fold the
minimum iteration check created by LoopRotate with the user check (< 8).

    void unsigned_check(short *pred, unsigned width) {
        if (width < 8) {
            for (int x = 0; x < width; x++)
                pred[x] = pred[x] * pred[x];
        }
    }

As a consequence, LLVM creates dead vector loops for the code above,
e.g. see https://godbolt.org/z/cb8eTcqET

https://alive2.llvm.org/ce/z/SHHW4d

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D104741
2021-06-25 10:24:40 +01:00
Sanjay Patel 50db987d59 [InstSimplify] move extract with undef index fold; NFC
This puts it closer to the other undef query check and
will avoid a potential ordering problem if we allow
folding non-constant-int indexes.
2021-06-24 13:22:10 -04:00
Florian Hahn 121ecb05e7
[SCEV] Generalize MatchBinaryAddToConst to support non-add expressions.
This patch generalizes MatchBinaryAddToConst to support matching
(A + C1), (A + C2), instead of just matching (A + C1), A.

The existing cases can be handled by treating non-add expressions A as
A + 0.

Reviewed By: mkazantsev

Differential Revision: https://reviews.llvm.org/D104634
2021-06-24 12:16:15 +01:00
Carl Ritson ae266e743c [LVI] Remove recursion from getValueForCondition (NFCI)
Convert getValueForCondition to a worklist model instead of using
recursion.

In pathological cases getValueForCondition recurses heavily.
Stack frames are quite expensive on x86-64, and some operating
systems (e.g. Windows) have relatively low stack size limits.
Using a worklist avoids potential failures from stack overflow.

Differential Revision: https://reviews.llvm.org/D104191
2021-06-24 09:58:22 +09:00
Eli Friedman b12192f7cd [ScalarEvolution] Clarify implementation of getPointerBase().
getPointerBase should only be looking through Add and AddRec
expressions; other expressions either aren't pointers, or can't be
looked through.

Technically, this is a functional change. For a multiply or min/max
expression, if they have exactly one pointer operand, and that operand
is the first operand, the behavior here changes. Similarly, if an AddRec
has a pointer-type step, the behavior changes. But that shouldn't be
happening in practice, and we plan to make such expressions illegal.
2021-06-23 12:55:59 -07:00
Eli Friedman fdaf304e0d [NFC][ScalarEvolution] Fix SCEVNAryExpr::getType().
SCEVNAryExpr::getType() could return the wrong type for a SCEVAddExpr.
Remove it, and add getType() methods to the relevant subclasses.

NFC because nothing uses it directly, as far as I know; this is just
future-proofing.
2021-06-23 12:55:59 -07:00
Nikita Popov 00d3f7cc3c [LAA] Make getPointersDiff() API compatible with opaque pointers
Make getPointersDiff() and sortPtrAccesses() compatible with opaque
pointers by explicitly passing in the element type instead of
determining it from the pointer element type.

The SLPVectorizer result is slightly non-optimal in that unnecessary
pointer bitcasts are added.

Differential Revision: https://reviews.llvm.org/D104784
2021-06-23 18:44:34 +02:00
Sanjay Patel 656001e7b2 [ValueTracking] look through bitcast of vector in computeKnownBits
This borrows as much as possible from the SDAG version of the code
(originally added with D27129 and since updated with big endian support).

In IR, we can test more easily for correctness than we did in the
original patch. I'm using the simplest cases that I could find for
InstSimplify: we computeKnownBits on variable shift amounts to see if
they are zero or in range. So shuffle constant elements into a vector,
cast it, and shift it.

The motivating x86 example from https://llvm.org/PR50123 is also here.
We computeKnownBits in the caller code, but we only check if the shift
amount is in range. That could be enhanced to catch the 2nd x86 test -
if the shift amount is known too big, the result is 0.

Alive2 understands the datalayout and agrees that the tests here are
correct - example:
https://alive2.llvm.org/ce/z/KZJFMZ

Differential Revision: https://reviews.llvm.org/D104472
2021-06-23 11:46:46 -04:00
Juneyoung Lee 5af8bacc94 [InstSimplify] Add more poison folding optimizations
This adds more poison folding optimizations to InstSimplify.

Since all binary operators propagate poison, these are fine.

Also, the precondition of `select cond, undef, x` -> `x` is relaxed to allow the case when `x` is undef.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D104661
2021-06-23 20:25:24 +09:00
Florian Hahn adee485adf
[SCEV] Support signed predicates in applyLoopGuards.
This adds handling for signed predicates, similar to how unsigned
predicates are already handled.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D104732
2021-06-23 10:21:05 +01:00
Joseph Huber 2662351e3b [OpenMP] Add new OpenMP globalization functions to library info
Summary:
The changes to globalization introduced in D97680 created two new functions to
push / pop shareably memory on the GPU, __kmpc_alloc_shared and
__kmpc_free_shared. This patch adds these new runtime functions to the
library info so they can be used by the HeapToStack attributor interface. This
optimization replaces malloc / free pairs with stack memory if legal.

Reviewed By: tianshilei1992

Differential Revision: https://reviews.llvm.org/D102087
2021-06-22 13:23:05 -04:00
Florian Hahn 6c782e6eb0
[SCEV] Reduce code to handle predicates in applyLoopGuards (NFC).
Hoist out common recurrence check and sink updating the map, to reduce
the code required to support additional predicates.
2021-06-22 15:56:45 +01:00
Nikita Popov e638a290f7 [ConstantFold] Delay fetching pointer element type
Don't do this while stipping pointer casts, instead fetch it at
the end. This improves compatibility with opaque pointers for the
case where the base object is not opaque.
2021-06-22 15:51:00 +02:00
Florian Hahn d17798823c
[SCEV] Retain AddExpr flags when subtracting a foldable constant.
Currently we drop wrapping flags for expressions like (A + C1)<flags> - C2.

But we can retain flags under certain conditions:

* Adding a smaller constant is NUW if the original AddExpr was NUW.

* Adding a constant with the same sign and small magnitude is NSW, if the
  original AddExpr was NSW.

This can improve results after using `SimplifyICmpOperands`, which may
subtract one in order to use stricter predicates, as is the case for
`isKnownPredicate`.

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D104319
2021-06-22 11:27:51 +01:00
Nikita Popov 04395fd6cb [ConstantFolding] Separate conditions in GEP evaluation (NFC)
Handle to gep p, 0-v case separately, and not as part of the loop
that ensures all indices are constant integers. Those two things
are not really related.
2021-06-22 11:14:47 +02:00
Eli Friedman 8f3d16905d [ScalarEvolution] Ensure backedge-taken counts are not pointers.
A backedge-taken count doesn't refer to memory; returning a pointer type
is nonsense. So make sure we always return an integer.

The obvious way to do this would be to just convert the operands of the
icmp to integers, but that doesn't quite work out at the moment:
isLoopEntryGuardedByCond currently gets confused by ptrtoint operations.
So we perform the ptrtoint conversion late for lt/gt operations.

The test changes are mostly innocuous. The most interesting changes are
more complex SCEV expressions of the form "(-1 * (ptrtoint i8* %ptr to
i64)) + %ptr)". This is expected: we can't fold this to zero because we
need to preserve the pointer base.

The call to isLoopEntryGuardedByCond in howFarToZero is less precise
because of ptrtoint operations; this shows up in the function
pr46786_c26_char in ptrtoint.ll. Fixing it here would require more
complex refactoring.  It should eventually be fixed by future
improvements to isImpliedCond.

See https://bugs.llvm.org/show_bug.cgi?id=46786 for context.

Differential Revision: https://reviews.llvm.org/D103656
2021-06-21 16:24:16 -07:00
Jacob Hegna f86d1f99b3 Remove ML inlining model artifacts.
They are not conducive to being stored in git. Instead, we autogenerate
mock model artifacts for use in tests. Production models can be
specified with the cmake flag LLVM_INLINER_MODEL_PATH.

LLVM_INLINER_MODEL_PATH has two sentinel values:
 - download, which will download the most recent compatible model.
 - autogenerate, which will autogenerate a "fake" model for testing the
 model uptake infrastructure.

Differential Revision: https://reviews.llvm.org/D104251
2021-06-21 17:38:09 +00:00
Eli Friedman 62ed024c74 [NFC][ScalarEvolution] Clean up ExitLimit constructors.
Make all the constructors forward to one constructor.  Remove redundant
assertions.
2021-06-20 17:40:30 -07:00
Juneyoung Lee 09e8c0d5aa [InstSimplify] icmp poison, X -> poison
This adds a simple transformation from icmp with poison constant to poison.
Comparing poison with something else is poison, so this is okay.

https://alive2.llvm.org/ce/z/e8iReb
https://alive2.llvm.org/ce/z/q4MurY
2021-06-20 15:39:07 +09:00
Tomas Matheson 1bcfa84ae9 Allow building for release with EXPENSIVE_CHECKS
D97225 moved LazyCallGraph verify() calls behind EXPENSIVE_CHECKS,
but verity() is defined for debug builds only so this had the unintended
effect of breaking release builds with EXPENSIVE_CHECKS.

Fix by enabling verify() for both debug and EXPENSIVE_CHECKS.

Differential Revision: https://reviews.llvm.org/D104514
2021-06-19 17:02:11 +01:00
Eli Friedman 8a567e5f22 [ScalarEvolution] Fix pointer/int type handling converting select/phi to min/max.
The old version of this code would blindly perform arithmetic without
paying attention to whether the types involved were pointers or
integers.  This could lead to weird expressions like negating a pointer.

Explicitly handle simple cases involving pointers, like "x < y ? x : y".
In all other cases, coerce the operands of the comparison to integer
types.  This avoids the weird cases, while handling most of the
interesting cases.

Differential Revision: https://reviews.llvm.org/D103660
2021-06-17 14:05:12 -07:00
Bjorn Pettersson 4c7f820b2b Update @llvm.powi to handle different int sizes for the exponent
This can be seen as a follow up to commit 0ee439b705,
that changed the second argument of __powidf2, __powisf2 and
__powitf2 in compiler-rt from si_int to int. That was to align with
how those runtimes are defined in libgcc.
One thing that seem to have been missing in that patch was to make
sure that the rest of LLVM also handle that the argument now depends
on the size of int (not using the si_int machine mode for 32-bit).
When using __builtin_powi for a target with 16-bit int clang crashed.
And when emitting libcalls to those rtlib functions, typically when
lowering @llvm.powi), the backend would always prepare the exponent
argument as an i32 which caused miscompiles when the rtlib was
compiled with 16-bit int.

The solution used here is to use an overloaded type for the second
argument in @llvm.powi. This way clang can use the "correct" type
when lowering __builtin_powi, and then later when emitting the libcall
it is assumed that the type used in @llvm.powi matches the rtlib
function.

One thing that needed some extra attention was that when vectorizing
calls several passes did not support that several arguments could
be overloaded in the intrinsics. This patch allows overload of a
scalar operand by adding hasVectorInstrinsicOverloadedScalarOpd, with
an entry for powi.

Differential Revision: https://reviews.llvm.org/D99439
2021-06-17 09:38:28 +02:00
Joachim Meyer 053dbb939d Use `-cfg-func-name` value as filter for `-view-cfg`, etc.
Currently the value is only used when calling `F->viewCFG()` which is missing out on its potential and usefulness.
So I added the check to the printer passes as well.

Reviewed By: MaskRay

Differential Revision: https://reviews.llvm.org/D102011
2021-06-16 23:54:51 +02:00
Eli Friedman 27963ccf07 [NFC][ScalarEvolution] Refactor createNodeForSelectOrPHI
In preparation for D103660.
2021-06-16 12:32:32 -07:00
Sanjay Patel ce95200b79 [InstSimplify] propagate poison through FP ops
We already have this fold:
  fadd float poison, 1.0 --> poison
...via ConstantFolding, so this makes the behavior consistent
if the other operand(s) are non-constant.

The fold for undef was added before poison existed as a
value/type in IR.

This came up in D102673 / D103169
because we're trying to sort out the more complicated handling
for constrained math ops.
We should have the handling for the regular instructions done
first, so we can build on that (or diverge as needed).

Differential Revision: https://reviews.llvm.org/D104383
2021-06-16 11:31:58 -04:00
Roman Lebedev a3113df219
[SCEV] PtrToInt on non-integral pointers is allowed
As per (committed without review) @reames's rGac81cb7e6dde9b0890ee1780eae94ab96743569b change,
we are now allowed to produce `ptrtoint` for non-integral pointers.
This will unblock further unbreaking of SCEV regarding int-vs-pointer type confusion.

Reviewed By: mkazantsev

Differential Revision: https://reviews.llvm.org/D104322
2021-06-16 10:24:25 +03:00
Arthur Eubanks 9aa1428174 [InstSimplify] Treat invariant group insts as bitcasts for load operands
We can look through invariant group intrinsics for the purposes of
simplifying the result of a load.

Since intrinsics can't be constants, but we also don't want to
completely rewrite load constant folding, we convert the load operand to
a constant. For GEPs and bitcasts we just treat them as constants. For
invariant group intrinsics, we treat them as a bitcast.

Relanding with a check for self-referential values.

Reviewed By: lebedev.ri

Differential Revision: https://reviews.llvm.org/D101103
2021-06-15 12:59:43 -07:00
spupyrev 0a0800c4d1 A post-processing for BFI inference
The current implementation for computing relative block frequencies does
not handle correctly control-flow graphs containing irreducible loops. This
results in suboptimally generated binaries, whose perf can be up to 5%
worse than optimal.

To resolve the problem, we apply a post-processing step, which iteratively
updates block frequencies based on the frequencies of their predesessors.
This corresponds to finding the stationary point of the Markov chain by
an iterative method aka "PageRank computation". The algorithm takes at
most O(|E| * IterativeBFIMaxIterations) steps but typically converges faster.

It is turned on by passing option `use-iterative-bfi-inference`
and applied only for functions containing profile data and irreducible loops.

Tested on SPEC06/17, where it is helping to get correct profile counts for one of
the binaries (403.gcc). In prod binaries, we've seen a speedup of up to 2%-5%
for binaries containing functions with hot irreducible loops.

Reviewed By: hoy, wenlei, davidxl

Differential Revision: https://reviews.llvm.org/D103289
2021-06-11 21:46:04 -07:00
Andrew Litteken f6dea2e732 [IRSim] Strip out the findSimilarity call from the constructor
Both doInitialize and runOnModule were running the entire analysis
due to the actual work being done in the constructor. Strip it out here
and only get the similarity during runOnModule.

Author: lanza
Reviewers: AndrewLitteken, paquette, plofti

Differential Revision: https://reviews.llvm.org/D92524
2021-06-11 18:41:28 -05:00
Andrew Litteken 64720f57be [IRSim] Don't copy the Mapper for createCandidatesFromSuffixTree
Every invocation this was copying the Mapper for no reason. Take a const
ref instead.

Author: lanza
Reviewers: AndrewLitteken, plofti, paquette,

Differential Review: https://reviews.llvm.org/D92532
2021-06-11 16:36:23 -05:00
Simon Pilgrim 5e6bfb661e [Analysis] Pass RecurrenceDescriptor as const reference. NFCI.
We were passing the RecurrenceDescriptor by value to most of the reduction analysis methods, despite it being rather bulky with TrackingVH members (that can be costly to copy). In all these cases we're only using the RecurrenceDescriptor for rather basic purposes (access to types/kinds etc.).

Differential Revision: https://reviews.llvm.org/D104029
2021-06-11 10:24:14 +01:00
Philip Reames 7629b2a09c [LI] Add a cover function for checking if a loop is mustprogress [nfc]
Essentially, the cover function simply combines the loop level check and the function level scope into one call.  This simplifies several callers and is (subjectively) less error prone.
2021-06-10 13:37:32 -07:00
Philip Reames aaaeb4b160 [SCEV] Use mustprogress flag on loops (in addition to function attribute)
This addresses a performance regression reported against 3c6e4191.  That change (correctly) limited a transform based on assumed finiteness to mustprogress loops, but the previous change (38540d7) which introduced the mustprogress check utility only handled function attributes, not the loop metadata form.

It turns out that clang uses the function attribute form for C++, and the loop metadata form for C.  As a result, 3c6e4191 ended up being a large regression in practice for C code as loops weren't being considered mustprogress despite the language semantics.
2021-06-10 13:20:28 -07:00
Philip Reames b6ee5f2b1d Move code for checking loop metadata into Analysis [nfc]
I need the mustprogress loop metadata in ScalarEvolution and it makes sense to keep all the accessors for quering loop metadate together.
2021-06-10 13:01:22 -07:00
Serge Pavlov 8ff36aab69 [ConstantFolding] Enable folding of min/max/copysign for all floats
Previously such folding was enabled for half, float and double values
only. With this change it is allowed for other floating point values
also.

Differential Revision: https://reviews.llvm.org/D103956
2021-06-10 11:57:51 +07:00
Philip Reames b65f30d6fb [SCEV] Minor code motion to simplify a later patch [nfc] 2021-06-09 14:17:06 -07:00
Arthur Eubanks 222cce3828 Revert "[InstSimplify] Treat invariant group insts as bitcasts for load operands"
This reverts commit 26044c6a54.

Breaks on invalid IR (see D101103).
2021-06-09 11:46:10 -07:00
Florian Hahn b76f1f1202
[SCEV] Keep common NUW flags when inlining Add operands.
Currently, NoWrapFlags are dropped if we inline operands of SCEVAddExpr
operands. As a consequence, we always drop flags when building
expressions like `getAddExpr(A, getAddExpr(B, C, NUW), NUW)`.

We should be able to retain NUW flags common among all inlined
SCEVAddExpr and the original flags.

Reviewed By: nikic, mkazantsev

Differential Revision: https://reviews.llvm.org/D103877
2021-06-09 17:13:21 +01:00
Artur Pilipenko 9197bac297 Add an option to hide "cold" blocks from CFG graph
Introduce a new cl::opt to hide "cold" blocks from CFG DOT graphs.
Use BFI to get block relative frequency. Hide the block if the
frequency is below the threshold set by the command line option value.

Reviewed By: davidxl, hoy
Differential Revision: https://reviews.llvm.org/D103640
2021-06-08 11:29:27 -07:00