For some reductions like G_VECREDUCE_OR on AArch64, we need to scalarize
completely if the source is <= 64b. This change adds support for that in
the legalizer. If the source has a pow-2 num elements, then we can do
a tree reduction using the scalar operation in the individual elements.
Otherwise, we just create a sequential chain of operations.
For AArch64, we only need to scalarize if the input is <64b. If it's great than
64b then we can first do a fewElements step to 64b, taking advantage of vector
instructions until we reach the point of scalarization.
I also had to relax the verifier checks for reductions because the intrinsics
support <1 x EltTy> types, which we lower to scalars for GlobalISel.
Differential Revision: https://reviews.llvm.org/D108276
AttributeList::hasAttribute() is confusing, use clearer methods like
hasParamAttr()/hasRetAttr().
Add hasRetAttr() since it was missing from AttributeList.
If a G_SHL is fed by a G_CONSTANT, the lower and upper bits of the source can be
shifted individually by the constant shift amount.
However in case the shift amount came from a G_TRUNC(G_CONSTANT), the generic shift legalization
code was used, producing intermediate shifts that are potentially illegal on some targets.
This change teaches narrowScalarShift to look through G_TRUNCs and G_*EXTs.
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D89100
This could be smarter by picking an ideal type, or at least splitting
the vector in half first. Also handles lower for non-power-of-2,
non-extending vector loads.
Currently this just avoids failing to legalize some odd vector AMDGPU
tests, but is a step towards removing the split logic from the
NarrowScalar logic.
The code for splitting an unaligned access into 2 pieces is
essentially the same as for splitting a non-power-of-2 load for
scalars. It would be better to pick an optimal memory access size and
directly use it, but splitting in half is what the DAG does.
As-is this fixes handling of some unaligned sextload/zextloads for
AMDGPU. In the future this will help drop the ugly abuse of
narrowScalar to handle splitting unaligned accesses.
This adds support for the case where
WideSize = DstSize + K * SrcSize
In this case, we can pad the G_MERGE_VALUES instruction with K extra undef
values with width SrcSize. Then the destination can be handled via
widenScalarDst.
Differential Revision: https://reviews.llvm.org/D106814
We have SelectionDAG patterns for 8 & 16-bit atomic operations, but they
assume the value types will have been legalized to 32-bits. So this adds
the ability to widen them to both AArch64 & generic GISel
infrastructure.
s56 stores are broken down into s32 + s24 stores. During this step
both of those new stores use an anyextended s64 value, resulting in
truncating stores. With s56, the s24 requires another lower step to
make it legal, and we were crashing because we didn't expect non-pow-2
stores to also be truncating as well.
Differential Revision: https://reviews.llvm.org/D106183
This adds some level of type safety, allows helper functions to be added for
specific opcodes for free, and also allows us to succinctly check for class
membership with the usual dyn_cast/isa/cast functions.
To start off with, add variants for the different load/store operations with some
places using it.
Differential Revision: https://reviews.llvm.org/D105751
Generalize the existing eq/ne case using `extractParts`. The original code only
handled narrowings for types of width 2n->n. This generalization allows for any
type that can be broken down by `extractParts`.
General overview is:
- Loop over each narrow-sized part and do exactly what the 2-register case did.
- Loop over the leftover-sized parts and do the same thing
- Widen the leftover-sized XOR results to the desired narrow size
- OR that all together and then do the comparison against 0 (just like the old
code)
This shows up a lot when building clang for AArch64 using GlobalISel, so it's
worth fixing. For the sake of simplicity, this doesn't handle the non-eq/ne
case yet.
Also remove the code in this case that notifies the observer; we're just going
to delete MI anyway so talking to the observer shouldn't be necessary.
Differential Revision: https://reviews.llvm.org/D105161
`LegalizerHelper::insertParts` uses `extractGCDType` on registers split into
a desired type and a smaller leftover type. This is used to populate a list
of registers. Each register in the list will have the same type as returned by
`extractGCDType`.
If we have
- `ResultTy` = s792
- `PartTy` = s64
- `LeftoverTy` = s24
When we call `extractGCDType`, we'll end up with two different types appended
to the list:
Part: gcd(792, 64, 24) => s8
Leftover: gcd(792, 24, 24) => s24
When this happens, we'll hit an assert while trying to build a G_MERGE_VALUES.
This patch changes the code for the leftover type so that we reuse the GCD from
the desired type.
e.g.
Leftover: gcd(792, 8, 24) => s8
https://llvm.godbolt.org/z/137Kqxj6j
Differential Revision: https://reviews.llvm.org/D105674
SelectionDAG's equivalents in ISD::InputArg/OutputArg track the
original argument index. Mips relies on this, and its currently
reinventing its own parallel CallLowering infrastructure which tracks
these indexes on the side. Add this to help move towards deleting the
custom mips handling.
Previously we didn't preserve the memory type and had to blindly
interpret a number of bytes. Now that non-byte memory accesses are
representable, we can handle these correctly.
Ported from DAG version (minus some weird special case i1 legality
checking which I don't fully understand, and we don't have a way to
query for)
For now, this is NFC and the test changes are placeholders. Since the
legality queries are still relying on byte-flattened memory sizes, the
legalizer can't actually see these non-byte accesses. This keeps this
change self contained without merging it with the larger patch to
switch to LLT memory queries.
Adds legalizer, register bank select, and instruction
select support for G_SBFX and G_UBFX. These opcodes generate
scalar or vector ALU bitfield extract instructions for
AMDGPU. The instructions allow both constant or register
values for the offset and width operands.
The 32-bit scalar version is expanded to a sequence that
combines the offset and width into a single register.
There are no 64-bit vgpr bitfield extract instructions, so the
operations are expanded to a sequence of instructions that
implement the operation. If the width is a constant,
then the 32-bit bitfield extract instructions are used.
Moved the AArch64 specific code for creating G_SBFX to
CombinerHelper.cpp so that it can be used by other targets.
Only bitfield extracts with constant offset and width values
are handled currently.
Differential Revision: https://reviews.llvm.org/D100149
This also adds new interfaces for the fixed- and scalable case:
* LLT::fixed_vector
* LLT::scalable_vector
The strategy for migrating to the new interfaces was as follows:
* If the new LLT is a (modified) clone of another LLT, taking the
same number of elements, then use LLT::vector(OtherTy.getElementCount())
or if the number of elements is halfed/doubled, it uses .divideCoefficientBy(2)
or operator*. That is because there is no reason to specifically restrict
the types to 'fixed_vector'.
* If the algorithm works on the number of elements (as unsigned), then
just use fixed_vector. This will need to be fixed up in the future when
modifying the algorithm to also work for scalable vectors, and will need
then need additional tests to confirm the behaviour works the same for
scalable vectors.
* If the test used the '/*Scalable=*/true` flag of LLT::vector, then
this is replaced by LLT::scalable_vector.
Reviewed By: aemerson
Differential Revision: https://reviews.llvm.org/D104451
Since this method can apply to cmpxchg operations, make sure it's clear
what value we're actually retrieving. This will help ensure we don't
accidentally ignore the failure ordering of cmpxchg in the future.
We could potentially introduce a getOrdering() method on AtomicSDNode
that asserts the operation isn't cmpxchg, but not sure that's
worthwhile.
Differential Revision: https://reviews.llvm.org/D103338
G_INSERT legalization is incomplete and doesn't work very
well. Instead try to use sequences of G_MERGE_VALUES/G_UNMERGE_VALUES
padding with undef values (although this can get pretty large).
For the case of load/store narrowing, this is still performing the
load/stores in irregularly sized pieces. It might be cleaner to split
this down into equal sized pieces, and rely on load/store merging to
optimize it.
When narrowing G_ADD and G_SUB, handle types that aren't a multiple of
the type we're narrowing to. This allows us to handle types like s96
on 64 bit targets.
Note that the test here has a couple of dead instructions because of
the way the setup legalizes. I wasn't able to come up with a way to
write this test that avoids that easily.
Differential Revision: https://reviews.llvm.org/D97811
When narrowing G_INSERT, handle types that aren't a multiple of the
type we're narrowing to. This comes up if we're narrowing something
like an s96 to fit in 64 bit registers and also for non-byte multiple
packed types if they come up.
This implementation handles these cases by extending the extra bits to
the narrow size and truncating the result back to the destination
size.
Differential Revision: https://reviews.llvm.org/D97791
Also changes the fewerElements helper to use the lookthrough constant helper
instead of m_ICst, since m_ICst doesn't look through extends.
Differential Revision: https://reviews.llvm.org/D103227
Adjusting the load register type is a widenScalar type action, not a
lowering. lowerLoad should be reserved for operations that change the
memory access size, such as unaligned load decomposition. With this
trying to adjust the register type, it was hard to avoid infinite
loops in the legalizer. Adds a bandaid to avoid regressing a few
AArch64 tests, but I'm not sure what the exact condition is and
there's probably a cleaner way to do this.
For AMDGPU this regresses handling of some cases for unaligned loads,
but the way this is currently working is a pretty ugly hack.
Thhis is a port from the DAG legalization. We're still missing some of the
canonicalizations of shuffles but it's a start.
Differential Revision: https://reviews.llvm.org/D102828
There were a bunch of lost debug location remarks that show up when legalizing
tail calls on AArch64.
This would happen because we drop the return in the block where we emit the
tail call. So, we end up dropping the debug location, which makes the
LostDebugLocObserver report a missing debug location.
Although it's *true* that we lose these debug locations, this isn't
a particularly useful remark. We expect to drop these debug locations when
emitting tail calls. Suppressing remarks in this case is preferable, since the
amount of noise could hide actual debug location related bugs.
To do this, I just plumbed the LostDebugLocObserver through the relevant
LegalizerHelper functions. This is the only case I can think of where we need
the LostDebugLocObserver in the LegalizerHelper. So, rather than storing it
in the LegalizerHelper proper and mucking around with the constructors, I
figured it'd be cleanest to take the simplest path for now.
This clears up ~20 noisy lost debug location remarks on CTMark in AArch64 at
-Os.
Differential Revision: https://reviews.llvm.org/D103128
The function `reduceOperationWidth` helps to legalize a vector
operation either by narrowing its type or by scalarizing the
operation itself. It currently supports instructions with one result.
This patch, in addition allows the same for instructions with two
results (for instance, G_SDIVREM).
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D100725
This patch adds 3 methods, one for power-of-2 vectors which use tree
reductions using vector ops, before a final reduction op. For non-pow-2
types it generates multiple narrow reductions and combines the values with
scalar ops.
Differential Revision: https://reviews.llvm.org/D97163