This patch legalizes the Machine Value Type introduced in D94096 for loads
and stores. A new target hook named getAsmOperandValueType() is added which
maps i512 to MVT::i64x8. GlobalISel falls back to DAG for legalization.
Differential Revision: https://reviews.llvm.org/D94097
In terms of readability, the `enum CFIMoveType` didn't better document what it
intends to convey i.e. the type of CFI section that gets emitted.
Reviewed By: dblaikie, MaskRay
Differential Revision: https://reviews.llvm.org/D76519
This reverts commit 0ce723cb22.
D76519 was not quite NFC. If we see a CFISection::Debug function before a
CFISection::EH one (-fexceptions -fno-asynchronous-unwind-tables), we may
incorrectly pick CFISection::Debug and emit a `.cfi_sections .debug_frame`.
We should use .eh_frame instead.
This scenario is untested.
In terms of readability, the `enum CFIMoveType` didn't better document what it
intends to convey i.e. the type of CFI section that gets emitted.
Reviewed By: dblaikie, MaskRay
Differential Revision: https://reviews.llvm.org/D76519
This was using the .2d variant which zeros 128 bits, but using the .2s variant
that zeros 64 bits is faster on some cores.
This is a prep step for D99586 to always using movi for zeroing floats.
Differential Revision: https://reviews.llvm.org/D99710
This patch adds handling for DBG_VALUE_LIST in the MIR-passes (after
finalize-isel), excluding the debug liveness passes and DWARF emission. This
most significantly affects MachineSink, which now needs to consider all used
registers of a debug value when sinking, but for most passes this change is
simply replacing getDebugOperand(0) with an iteration over all debug operands.
Differential Revision: https://reviews.llvm.org/D92578
Rewrites test to use correct architecture triple; fixes incorrect
reference in SourceLevelDebugging doc; simplifies `spillReg` behaviour
so as to not be dependent on changes elsewhere in the patch stack.
This reverts commit d2000b45d0.
This patch adds a new instruction that can represent variadic debug values,
DBG_VALUE_VAR. This patch alone covers the addition of the instruction and a set
of basic code changes in MachineInstr and a few adjacent areas, but does not
correctly handle variadic debug values outside of these areas, nor does it
generate them at any point.
The new instruction is similar to the existing DBG_VALUE instruction, with the
following differences: the operands are in a different order, any number of
values may be used in the instruction following the Variable and Expression
operands (these are referred to in code as “debug operands”) and are indexed
from 0 so that getDebugOperand(X) == getOperand(X+2), and the Expression in a
DBG_VALUE_VAR must use the DW_OP_LLVM_arg operator to pass arguments into the
expression.
The new DW_OP_LLVM_arg operator is only valid in expressions appearing in a
DBG_VALUE_VAR; it takes a single argument and pushes the debug operand at the
index given by the argument onto the Expression stack. For example the
sub-expression `DW_OP_LLVM_arg, 0` has the meaning “Push the debug operand at
index 0 onto the expression stack.”
Differential Revision: https://reviews.llvm.org/D82363
This change introduces support for zero flag ELF section groups to LLVM.
LLVM already supports COMDAT sections, which in ELF are a special type
of ELF section groups. These are generally useful to enable linker GC
where you want a group of sections to always travel together, that is to
be either retained or discarded as a whole, but without the COMDAT
semantics. Other ELF assemblers already support zero flag ELF section
groups and this change helps us reach feature parity.
Differential Revision: https://reviews.llvm.org/D95851
In the future Windows will enable Control-flow Enforcement Technology (CET aka shadow stacks). To protect the path where the context is updated during exception handling, the binary is required to enumerate valid unwind entrypoints in a dedicated section which is validated when the context is being set during exception handling.
This change allows llvm to generate the section that contains the appropriate symbol references in the form expected by the msvc linker.
This feature is enabled through a new module flag, ehcontguard, which was modelled on the cfguard flag.
The change includes a test that when the module flag is enabled the section is correctly generated.
The set of exception continuation information includes returns from exceptional control flow (catchret in llvm).
In order to collect catchret we:
1) Includes an additional flag on machine basic blocks to indicate that the given block is the target of a catchret operation,
2) Introduces a new machine function pass to insert and collect symbols at the start of each block, and
3) Combines these targets with the other EHCont targets that were already being collected.
Change originally authored by Daniel Frampton <dframpto@microsoft.com>
For more details, see MSVC documentation for `/guard:ehcont`
https://docs.microsoft.com/en-us/cpp/build/reference/guard-enable-eh-continuation-metadata
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D94835
Add the aarch64[_be]-*-gnu_ilp32 targets to support the GNU ILP32 ABI for AArch64.
The needed codegen changes were mostly already implemented in D61259, which added support for the watchOS ILP32 ABI. The main changes are:
- Wiring up the new target to enable ILP32 codegen and MC.
- ILP32 va_list support.
- ILP32 TLSDESC relocation support.
There was existing MC support for ELF ILP32 relocations from D25159 which could be enabled by passing "-target-abi ilp32" to llvm-mc. This was changed to check for "gnu_ilp32" in the target triple instead. This shouldn't cause any issues since the existing support was slightly broken: it was generating ELF64 objects instead of the ELF32 object files expected by the GNU ILP32 toolchain.
This target has been tested by running the full rustc testsuite on a big-endian ILP32 system based on the GCC ILP32 toolchain.
Reviewed By: kristof.beyls
Differential Revision: https://reviews.llvm.org/D94143
This patch fixes a crash encountered when compiling this code:
...
float16_t a;
__asm__("fminv %h[a], %[b], %[c].h"
: [a] "=r" (a)
: [b] "Upl" (b), [c] "w" (c))
The issue here is when using the 'h' modifier for a register
constraint 'r'.
Differential Revision: https://reviews.llvm.org/D93537
All these potential null pointer dereferences are reported by my static analyzer for null smart pointer dereferences, which has a different implementation from `alpha.cplusplus.SmartPtr`.
The checked pointers in this patch are initialized by Target::createXXX functions. When the creator function pointer is not correctly set, a null pointer will be returned, or the creator function may originally return a null pointer.
Some of them may not make sense as they may be checked before entering the function, but I fixed them all in this patch. I submit this fix because 1) similar checks are found in some other places in the LLVM codebase for the same return value of the function; and, 2) some of the pointers are dereferenced before they are checked, which may definitely trigger a null pointer dereference if the return value is nullptr.
Reviewed By: tejohnson, MaskRay, jpienaar
Differential Revision: https://reviews.llvm.org/D91410
Add support for match-all tags and GOT-free runtime calls, which
are both required for the kernel to be able to support outlined
checks. This requires extending the access info to let the backend
know when to enable these features. To make the code easier to maintain
introduce an enum with the bit field positions for the access info.
Allow outlined checks to be enabled with -mllvm
-hwasan-inline-all-checks=0. Kernels that contain runtime support for
outlined checks may pass this flag. Kernels lacking runtime support
will continue to link because they do not pass the flag. Old versions
of LLVM will ignore the flag and continue to use inline checks.
With a separate kernel patch [1] I measured the code size of defconfig
+ tag-based KASAN, as well as boot time (i.e. time to init launch)
on a DragonBoard 845c with an Android arm64 GKI kernel. The results
are below:
code size boot time
before 92824064 6.18s
after 38822400 6.65s
[1] https://linux-review.googlesource.com/id/I1a30036c70ab3c3ee78d75ed9b87ef7cdc3fdb76
Depends on D90425
Differential Revision: https://reviews.llvm.org/D90426
In a kernel (or in general in environments where bit 55 of the address
is set) the shadow base needs to point to the end of the shadow region,
not the beginning. Bit 55 needs to be sign extended into bits 52-63
of the shadow base offset, otherwise we end up loading from an invalid
address. We can do this by using SBFX instead of UBFX.
Using SBFX should have no effect in the userspace case where bit 55
of the address is clear so we do so unconditionally. I don't think
we need a ABI version bump for this (but one will come anyway when
we switch to x20 for the shadow base register).
Differential Revision: https://reviews.llvm.org/D90424
From a code size perspective it turns out to be better to use a
callee-saved register to pass the shadow base. For non-leaf functions
it avoids the need to reload the shadow base into x9 after each
function call, at the cost of an additional stack slot to save the
caller's x20. But with x9 there is also a stack size cost, either
as a result of copying x9 to a callee-saved register across calls or
by spilling it to stack, so for the non-leaf functions the change to
stack usage is largely neutral.
It is also code size (and stack size) neutral for many leaf functions.
Although they now need to save/restore x20 this can typically be
combined via LDP/STP into the x30 save/restore. In the case where
the function needs callee-saved registers or stack spills we end up
needing, on average, 8 more bytes of stack and 1 more instruction
but given the improvements to other functions this seems like the
right tradeoff.
Unfortunately we cannot change the register for the v1 (non short
granules) check because the runtime assumes that the shadow base
register is stored in x9, so the v1 check still uses x9.
Aside from that there is no change to the ABI because the choice
of shadow base register is a contract between the caller and the
outlined check function, both of which are compiler generated. We do
need to rename the v2 check functions though because the functions
are deduplicated based on their names, not on their contents, and we
need to make sure that when object files from old and new compilers
are linked together we don't end up with a function that uses x9
calling an outlined check that uses x20 or vice versa.
With this change code size of /system/lib64/*.so in an Android build
with HWASan goes from 200066976 bytes to 194085912 bytes, or a 3%
decrease.
Differential Revision: https://reviews.llvm.org/D90422
A dynamic linker with lazy binding support may need to handle variant
PCS function symbols specially, so an ELF symbol table marking
STO_AARCH64_VARIANT_PCS [1] was added to address this.
Function symbols that follow the vector PCS are marked via the
.variant_pcs assembler directive, which takes a single parameter
specifying the symbol name and sets the STO_AARCH64_VARIANT_PCS st_other
flag in the object file.
[1] https://github.com/ARM-software/abi-aa/blob/master/aaelf64/aaelf64.rst#st-other-values
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D89138
This saves one instruction per prologue/epilogue for any function with
an odd number of callee-saved GPRs, but more importantly, allows such
functions to match the packed unwind format.
Differential Revision: https://reviews.llvm.org/D88699
Flags of the module derived exclusively from the compiler flag `-mbranch-protection`.
The note is generated based on the module flags accordingly.
After this change in case of compile unit without function won't have
the .note.gnu.property if the compiler flag is not present [1].
[1] https://bugs.llvm.org/show_bug.cgi?id=46480
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D80791
This turns all jump table entries into deltas within the target
function because in the small memory model all code & static data must
be in a 4GB block somewhere in memory.
When the entries were a delta between the table location and a basic
block, the 32-bit signed entries are not enough to guarantee
reachability.
https://reviews.llvm.org/D87286
This change enables the generic implicit null transformation for the AArch64 target. As background for those unfamiliar with our implicit null check support:
An implicit null check is the use of a signal handler to catch and redirect to a handler a null pointer. Specifically, it's replacing an explicit conditional branch with such a redirect. This is only done for very cold branches under frontend control w/appropriate metadata.
FAULTING_OP is used to wrap the faulting instruction. It is modelled as being a conditional branch to reflect the fact it can transfer control in the CFG.
FAULTING_OP does not need to be an analyzable branch to achieve it's purpose. (Or at least, that's the x86 model. I find this slightly questionable.)
When lowering to MC, we convert the FAULTING_OP back into the actual instruction, record the labels, and lower the original instruction.
As can be seen in the test changes, currently the AArch64 backend does not eliminate the unconditional branch to the fallthrough block. I've tried two approaches, neither of which worked. I plan to return to this in a separate change set once I've wrapped my head around the interactions a bit better. (X86 handles this via AllowModify on analyzeBranch, but adding the obvious code causing BranchFolding to crash. I haven't yet figured out if it's a latent bug in BranchFolding, or something I'm doing wrong.)
Differential Revision: https://reviews.llvm.org/D87851
Writing the .note.gnu.property manually is error prone and hard to
maintain in the assembly files.
The -mmark-bti-property is for the assembler to emit the section with the
GNU_PROPERTY_AARCH64_FEATURE_1_BTI. To be used when C/C++ is compiled
with -mbranch-protection=bti.
This patch refactors the .note.gnu.property handling.
Reviewed By: chill, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D81930
Reland with test dependency on aarch64 target.
Writing the .note.gnu.property manually is error prone and hard to
maintain in the assembly files.
The -mmark-bti-property is for the assembler to emit the section with the
GNU_PROPERTY_AARCH64_FEATURE_1_BTI. To be used when C/C++ is compiled
with -mbranch-protection=bti.
This patch refactors the .note.gnu.property handling.
Reviewed By: chill, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D81930
Following on from this RFC[0] from a while back, this is the first patch towards
implementing variadic debug values.
This patch specifically adds a set of functions to MachineInstr for performing
operations specific to debug values, and replacing uses of the more general
functions where appropriate. The most prevalent of these is replacing
getOperand(0) with getDebugOperand(0) for debug-value-specific code, as the
operands corresponding to values will no longer be at index 0, but index 2 and
upwards: getDebugOperand(x) == getOperand(x+2). Similar replacements have been
added for the other operands, along with some helper functions to replace
oft-repeated code and operate on a variable number of value operands.
[0] http://lists.llvm.org/pipermail/llvm-dev/2020-February/139376.html<Paste>
Differential Revision: https://reviews.llvm.org/D81852
Some processors may speculatively execute the instructions immediately
following RET (returns) and BR (indirect jumps), even though
control flow should change unconditionally at these instructions.
To avoid a potential miss-speculatively executed gadget after these
instructions leaking secrets through side channels, this pass places a
speculation barrier immediately after every RET and BR instruction.
Since these barriers are never on the correct, architectural execution
path, performance overhead of this is expected to be low.
On targets that implement that Armv8.0-SB Speculation Barrier extension,
a single SB instruction is emitted that acts as a speculation barrier.
On other targets, a DSB SYS followed by a ISB is emitted to act as a
speculation barrier.
These speculation barriers are implemented as pseudo instructions to
avoid later passes to analyze them and potentially remove them.
Even though currently LLVM does not produce BRAA/BRAB/BRAAZ/BRABZ
instructions, these are also mitigated by the pass and tested through a
MIR test.
The mitigation is off by default and can be enabled by the
harden-sls-retbr subtarget feature.
Differential Revision: https://reviews.llvm.org/D81400
Follow-up of D78082 (x86-64).
This change avoids dynamic relocations in `xray_instr_map` for ARM/AArch64/powerpc64le.
MIPS64 cannot use 64-bit PC-relative addresses because R_MIPS_PC64 is not defined.
Because MIPS32 shares the same code, for simplicity, we don't use PC-relative addresses for MIPS32 as well.
Tested on AArch64 Linux and ppc64le Linux.
Reviewed By: ianlevesque
Differential Revision: https://reviews.llvm.org/D78590
- Adding changes to support comments on outlined functions with outlining for the conditions through which it was outlined (e.g. Thunks, Tail calls)
- Adapts the emitFunctionHeader to print out a comment next to the header if the target specifies it based on information in MachineFunctionInfo
- Adds mir test for function annotiation
Differential Revision: https://reviews.llvm.org/D78062
Summary:
For -fpatchable-function-entry=N,0 -mbranch-protection=bti, after
9a24488cb6, we place the NOP sled after
the initial BTI.
```
.Lfunc_begin0:
bti c
nop
nop
.section __patchable_function_entries,"awo",@progbits,f,unique,0
.p2align 3
.xword .Lfunc_begin0
```
This patch adds a label after the initial BTI and changes the __patchable_function_entries entry to reference the label:
```
.Lfunc_begin0:
bti c
.Lpatch0:
nop
nop
.section __patchable_function_entries,"awo",@progbits,f,unique,0
.p2align 3
.xword .Lpatch0
```
This placement is compatible with the resolution in
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92424 .
A local linkage function whose address is not taken does not need a BTI.
Placing the patch label after BTI has the advantage that code does not
need to differentiate whether the function has an initial BTI.
Reviewers: mrutland, nickdesaulniers, nsz, ostannard
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73680
Similar to the function attribute `prefix` (prefix data),
"patchable-function-prefix" inserts data (M NOPs) before the function
entry label.
-fpatchable-function-entry=2,1 (1 NOP before entry, 1 NOP after entry)
will look like:
```
.type foo,@function
.Ltmp0: # @foo
nop
foo:
.Lfunc_begin0:
# optional `bti c` (AArch64 Branch Target Identification) or
# `endbr64` (Intel Indirect Branch Tracking)
nop
.section __patchable_function_entries,"awo",@progbits,get,unique,0
.p2align 3
.quad .Ltmp0
```
-fpatchable-function-entry=N,0 + -mbranch-protection=bti/-fcf-protection=branch has two reasonable
placements (https://gcc.gnu.org/ml/gcc-patches/2020-01/msg01185.html):
```
(a) (b)
func: func:
.Ltmp0: bti c
bti c .Ltmp0:
nop nop
```
(a) needs no additional code. If the consensus is to go for (b), we will
need more code in AArch64BranchTargets.cpp / X86IndirectBranchTracking.cpp .
Differential Revision: https://reviews.llvm.org/D73070
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: merge_guards_bot, luismarques, smeenai, ldionne, lenary, s.egerton, pzheng, sameer.abuasal, MaskRay, wuzish, echristo, Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
The Linux kernel uses -fpatchable-function-entry to implement DYNAMIC_FTRACE_WITH_REGS
for arm64 and parisc. GCC 8 implemented
-fpatchable-function-entry, which can be seen as a generalized form of
-mnop-mcount. The N,M form (function entry points before the Mth NOP) is
currently only used by parisc.
This patch adds N,0 support to AArch64 codegen. N is represented as the
function attribute "patchable-function-entry". We will use a different
function attribute for M, if we decide to implement it.
The patch reuses the existing patchable-function pass, and
TargetOpcode::PATCHABLE_FUNCTION_ENTER which is currently used by XRay.
When the integrated assembler is used, __patchable_function_entries will
be created for each text section with the SHF_LINK_ORDER flag to prevent
--gc-sections (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93197) and
COMDAT (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93195) issues.
Retrospectively, __patchable_function_entries should use a PC-relative
relocation type to avoid the SHF_WRITE flag and dynamic relocations.
"patchable-function-entry"'s interaction with Branch Target
Identification is still unclear (see
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92424 for GCC discussions).
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D72215
Recommit after making the same API change in non-x86 targets. This has been build for all targets, and tested for effected ones. Why the difference? Because my disk filled up when I tried make check for all.
For auto-padding assembler support, we'll need to bundle the label with the instructions (nops or call sequences) so that they don't get separated. This just rearranges the code to make the upcoming change more obvious.
The emission of stack maps in AArch64 binaries has been disabled for all
binary formats except Mach-O since rL206610, probably mistakenly, as far
as I can tell. This patch reverts this to its intended state.
Differential Revision: https://reviews.llvm.org/D70069
Patch by Loic Ottet.
We can't use short granules with stack instrumentation when targeting older
API levels because the rest of the system won't understand the short granule
tags stored in shadow memory.
Moreover, we need to be able to let old binaries (which won't understand
short granule tags) run on a new system that supports short granule
tags. Such binaries will call the __hwasan_tag_mismatch function when their
outlined checks fail. We can compensate for the binary's lack of support
for short granules by implementing the short granule part of the check in
the __hwasan_tag_mismatch function. Unfortunately we can't do anything about
inline checks, but I don't believe that we can generate these by default on
aarch64, nor did we do so when the ABI was fixed.
A new function, __hwasan_tag_mismatch_v2, is introduced that lets code
targeting the new runtime avoid redoing the short granule check. Because tag
mismatches are rare this isn't important from a performance perspective; the
main benefit is that it introduces a symbol dependency that prevents binaries
targeting the new runtime from running on older (i.e. incompatible) runtimes.
Differential Revision: https://reviews.llvm.org/D68059
llvm-svn: 373035
Summary:
Adds the following inline asm constraints for SVE:
- Upl: One of the low eight SVE predicate registers, P0 to P7 inclusive
- Upa: SVE predicate register with full range, P0 to P15
Reviewers: t.p.northover, sdesmalen, rovka, momchil.velikov, cameron.mcinally, greened, rengolin
Reviewed By: rovka
Subscribers: javed.absar, tschuett, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66524
llvm-svn: 371967