This extends any frame record created in the function to include that
parameter, passed in X22.
The new record looks like [X22, FP, LR] in memory, and FP is stored with 0b0001
in bits 63:60 (CodeGen assumes they are 0b0000 in normal operation). The effect
of this is that tools walking the stack should expect to see one of three
values there:
* 0b0000 => a normal, non-extended record with just [FP, LR]
* 0b0001 => the extended record [X22, FP, LR]
* 0b1111 => kernel space, and a non-extended record.
All other values are currently reserved.
If compiling for arm64e this context pointer is address-discriminated with the
discriminator 0xc31a and the DB (process-specific) key.
There is also an "i8** @llvm.swift.async.context.addr()" intrinsic providing
front-ends access to this slot (and forcing its creation initialized to nullptr
if necessary).
It used to be that all of our intrinsics were call instructions, but over time, we've added more and more invokable intrinsics. According to the verifier, we're up to 8 right now. As IntrinsicInst is a sub-class of CallInst, this puts us in an awkward spot where the idiomatic means to check for intrinsic has a false negative if the intrinsic is invoked.
This change switches IntrinsicInst from being a sub-class of CallInst to being a subclass of CallBase. This allows invoked intrinsics to be instances of IntrinsicInst, at the cost of requiring a few more casts to CallInst in places where the intrinsic really is known to be a call, not an invoke.
After this lands and has baked for a couple days, planned cleanups:
Make GCStatepointInst a IntrinsicInst subclass.
Merge intrinsic handling in InstCombine and use idiomatic visitIntrinsicInst entry point for InstVisitor.
Do the same in SelectionDAG.
Do the same in FastISEL.
Differential Revision: https://reviews.llvm.org/D99976
When using the large code model with FastISel (for example via
clang -O0 which adds the optnone attribute), FP constants could
still be materialized using adrp + ldr. Unconditionally enable
the existing path for MachO to materialize the constant in code.
For testing, restore literal_pools_float.ll to exercise the constant
pool and add two optnone-functions that return a float and a double,
respectively. Consolidate fpimm.ll and add a new fast-isel-fpimm.ll
to check the code paths taken with FastISel.
Differential Revision: https://reviews.llvm.org/D99607
This is a followup to D98145: As far as I know, tracking of kill
flags in FastISel is just a compile-time optimization. However,
I'm not actually seeing any compile-time regression when removing
the tracking. This probably used to be more important in the past,
before FastRA was switched to allocate instructions in reverse
order, which means that it discovers kills as a matter of course.
As such, the kill tracking doesn't really seem to serve a purpose
anymore, and just adds additional complexity and potential for
errors. This patch removes it entirely. The primary changes are
dropping the hasTrivialKill() method and removing the kill
arguments from the emitFast methods. The rest is mechanical fixup.
Differential Revision: https://reviews.llvm.org/D98294
Some people are using alternative address spaces to track GC data, but
otherwise they behave exactly the same. This is the only place in the backend
we even try to care about it so it's really not achieving anything.
This patch adds a new intrinsic experimental.vector.reduce that takes a single
vector and returns a vector of matching type but with the original lane order
reversed. For example:
```
vector.reverse(<A,B,C,D>) ==> <D,C,B,A>
```
The new intrinsic supports fixed and scalable vectors types.
The fixed-width vector relies on shufflevector to maintain existing behaviour.
Scalable vector uses the new ISD node - VECTOR_REVERSE.
This new intrinsic is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].
Patch by Paul Walker (@paulwalker-arm).
[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html
Differential Revision: https://reviews.llvm.org/D94883
This requires adding a missing 'const' to the definition because
the callers are using const args, but there should be no change
in behavior.
The intrinsic method was added with D86798 / rG096527214033
It's useful for a debugger to be able to distinguish an @llvm.debugtrap
from a (noreturn) @llvm.trap, so this extends the existing Windows
behaviour to other platforms.
GCC 7 was reporting "enumeral and non-enumeral type in conditional expression"
as a warning.
The code casts an instruction opcode enum to unsigned implicitly, in
line with intentions; so this commit silences the warning by making the
cast to unsigned explicit.
To make sure that no barrier gets placed on the architectural execution
path, each
BLR x<N>
instruction gets transformed to a
BL __llvm_slsblr_thunk_x<N>
instruction, with __llvm_slsblr_thunk_x<N> a thunk that contains
__llvm_slsblr_thunk_x<N>:
BR x<N>
<speculation barrier>
Therefore, the BLR instruction gets split into 2; one BL and one BR.
This transformation results in not inserting a speculation barrier on
the architectural execution path.
The mitigation is off by default and can be enabled by the
harden-sls-blr subtarget feature.
As a linker is allowed to clobber X16 and X17 on function calls, the
above code transformation would not be correct in case a linker does so
when N=16 or N=17. Therefore, when the mitigation is enabled, generation
of BLR x16 or BLR x17 is avoided.
As BLRA* indirect calls are not produced by LLVM currently, this does
not aim to implement support for those.
Differential Revision: https://reviews.llvm.org/D81402
As the extern_weak target might be missing, resolving to the absolute
address zero, we can't use the normal direct PC-relative branch
instructions (as that would result in relocations out of range).
Improve the classifyGlobalFunctionReference method to set
MO_DLLIMPORT/MO_COFFSTUB, and simplify the existing code in
AArch64TargetLowering::LowerCall to use the return value from
classifyGlobalFunctionReference for these cases.
Add code in both AArch64FastISel and GlobalISel/IRTranslator to
bail out for function calls to extern weak functions on windows,
to let SelectionDAG handle them.
This matches what was done for X86 in 6bf108d77a.
Differential Revision: https://reviews.llvm.org/D71721
Summary:
A new function pass (Transforms/CFGuard/CFGuard.cpp) inserts CFGuard checks on
indirect function calls, using either the check mechanism (X86, ARM, AArch64) or
or the dispatch mechanism (X86-64). The check mechanism requires a new calling
convention for the supported targets. The dispatch mechanism adds the target as
an operand bundle, which is processed by SelectionDAG. Another pass
(CodeGen/CFGuardLongjmp.cpp) identifies and emits valid longjmp targets, as
required by /guard:cf. This feature is enabled using the `cfguard` CC1 option.
Reviewers: thakis, rnk, theraven, pcc
Subscribers: ychen, hans, metalcanine, dmajor, tomrittervg, alex, mehdi_amini, mgorny, javed.absar, kristof.beyls, hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65761
This is the main CodeGen patch to support the arm64_32 watchOS ABI in LLVM.
FastISel is mostly disabled for now since it would generate incorrect code for
ILP32.
llvm-svn: 371722
This makes the field wider than MachineOperand::SubReg_TargetFlags so that
we don't end up silently truncating any higher bits. We should still catch
any bits truncated from the MachineOperand field as a consequence of the
assertion in MachineOperand::setTargetFlags().
Differential Revision: https://reviews.llvm.org/D65465
llvm-svn: 367474
On Windows ARM64, intrinsic __debugbreak is compiled into brk #0xF000 which is
mapped to llvm.debugtrap in Clang. Instruction brk #F000 is the defined break
point instruction on ARM64 which is recognized by Windows debugger and
exception handling code, so llvm.debugtrap should map to it instead of
redirecting to llvm.trap (brk #1) as the default implementation.
Differential Revision: https://reviews.llvm.org/D63635
llvm-svn: 364115
This patch changes isFPImmLegal to return if the value can be enconded
as the immediate operand of a logical instruction besides checking if
for immediate field for fmov.
This optimizes some floating point materization, inclusive values
used on isinf lowering.
Reviewed By: rengolin, efriedma, evandro
Differential Revision: https://reviews.llvm.org/D57044
llvm-svn: 352866
Summary:
Avoids duplicating generated static helpers for calling convention
analysis.
This also means you can modify AArch64CallingConv.td without recompiling
the AArch64ISelLowering.cpp monolith, so it provides faster incremental
rebuilds.
Saves 12K in llc.exe, but adds a new object file, which is large.
Reviewers: efriedma, t.p.northover
Subscribers: mgorny, javed.absar, kristof.beyls, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D56948
llvm-svn: 352430
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The pass implements tracking of control flow miss-speculation into a "taint"
register. That taint register can then be used to mask off registers with
sensitive data when executing under miss-speculation, a.k.a. "transient
execution".
This pass is aimed at mitigating against SpectreV1-style vulnarabilities.
At the moment, it implements the tracking of miss-speculation of control
flow into a taint register, but doesn't implement a mechanism yet to then
use that taint register to mask off vulnerable data in registers (something
for a follow-on improvement). Possible strategies to mask out vulnerable
data that can be implemented on top of this are:
- speculative load hardening to automatically mask of data loaded
in registers.
- using intrinsics to mask of data in registers as indicated by the
programmer (see https://lwn.net/Articles/759423/).
For AArch64, the following implementation choices are made.
Some of these are different than the implementation choices made in
the similar pass implemented in X86SpeculativeLoadHardening.cpp, as
the instruction set characteristics result in different trade-offs.
- The speculation hardening is done after register allocation. With a
relative abundance of registers, one register is reserved (X16) to be
the taint register. X16 is expected to not clash with other register
reservation mechanisms with very high probability because:
. The AArch64 ABI doesn't guarantee X16 to be retained across any call.
. The only way to request X16 to be used as a programmer is through
inline assembly. In the rare case a function explicitly demands to
use X16/W16, this pass falls back to hardening against speculation
by inserting a DSB SYS/ISB barrier pair which will prevent control
flow speculation.
- It is easy to insert mask operations at this late stage as we have
mask operations available that don't set flags.
- The taint variable contains all-ones when no miss-speculation is detected,
and contains all-zeros when miss-speculation is detected. Therefore, when
masking, an AND instruction (which only changes the register to be masked,
no other side effects) can easily be inserted anywhere that's needed.
- The tracking of miss-speculation is done by using a data-flow conditional
select instruction (CSEL) to evaluate the flags that were also used to
make conditional branch direction decisions. Speculation of the CSEL
instruction can be limited with a CSDB instruction - so the combination of
CSEL + a later CSDB gives the guarantee that the flags as used in the CSEL
aren't speculated. When conditional branch direction gets miss-speculated,
the semantics of the inserted CSEL instruction is such that the taint
register will contain all zero bits.
One key requirement for this to work is that the conditional branch is
followed by an execution of the CSEL instruction, where the CSEL
instruction needs to use the same flags status as the conditional branch.
This means that the conditional branches must not be implemented as one
of the AArch64 conditional branches that do not use the flags as input
(CB(N)Z and TB(N)Z). This is implemented by ensuring in the instruction
selectors to not produce these instructions when speculation hardening
is enabled. This pass will assert if it does encounter such an instruction.
- On function call boundaries, the miss-speculation state is transferred from
the taint register X16 to be encoded in the SP register as value 0.
Future extensions/improvements could be:
- Implement this functionality using full speculation barriers, akin to the
x86-slh-lfence option. This may be more useful for the intrinsics-based
approach than for the SLH approach to masking.
Note that this pass already inserts the full speculation barriers if the
function for some niche reason makes use of X16/W16.
- no indirect branch misprediction gets protected/instrumented; but this
could be done for some indirect branches, such as switch jump tables.
Differential Revision: https://reviews.llvm.org/D54896
llvm-svn: 349456
We keep a few iterators into the basic block we're selecting while
performing FastISel. Usually this is fine, but occasionally code wants
to remove already-emitted instructions. When this happens we have to be
careful to update those iterators so they're not pointint at dangling
memory.
llvm-svn: 349365
Summary:
Specifying X[8-15,18] registers as callee-saved is used to support
CONFIG_ARM64_LSE_ATOMICS in Linux kernel. As part of this patch we:
- use custom CSR list/mask when user specifies custom CSRs
- update Machine Register Info's list of CSRs with additional custom CSRs in
LowerCall and LowerFormalArguments.
Reviewers: srhines, nickdesaulniers, efriedma, javed.absar
Reviewed By: nickdesaulniers
Subscribers: kristof.beyls, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D52216
llvm-svn: 342824
Summary:
Reserving registers x1-7 is used to support CONFIG_ARM64_LSE_ATOMICS in Linux kernel. This change adds support for reserving registers x1 through x7.
Reviewers: javed.absar, phosek, srhines, nickdesaulniers, efriedma
Reviewed By: nickdesaulniers, efriedma
Subscribers: niravd, jfb, manojgupta, nickdesaulniers, jyknight, efriedma, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D48580
llvm-svn: 341706
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
llvm-svn: 328395
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes
AArch64FastISel to cease using the old getAlignment() API of MemoryIntrinsic in favour of getting
source & dest specific alignments through the new API.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, r323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324773
Pass parameters properly in calls to such functions (pass all
floats in integer registers), and handle va_start properly (allocate
stack immediately below the arguments on the stack, to save the
register arguments into a single continuous array).
Differential Revision: https://reviews.llvm.org/D35006
llvm-svn: 307928
The "Add/sub (shifted reg)" instructions use the 31 encoding for xzr and wzr
rather than the SP, so we need to use different variants.
Situations where this actually comes up are rare enough (see test-case) that I
think falling back to DAG is fine.
llvm-svn: 305230
Summary:
- Fix assertion failures on F16 to/from int types in FastISel by falling
back to regular ISel
- Add a testcase of various conversion cases with FastISel (-O0)
Reviewers: kristof.beyls, jmolloy, SjoerdMeijer
Reviewed By: SjoerdMeijer
Subscribers: SjoerdMeijer, llvm-commits, srhines, pirama, aemerson, rengolin, javed.absar, kristof.beyls
Differential Revision: https://reviews.llvm.org/D33734
llvm-svn: 305127
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
This eliminates many extra 'Idx' induction variables in loops over
arguments in CodeGen/ and Target/. It also reduces the number of places
where we assume that ReturnIndex is 0 and that we should add one to
argument numbers to get the corresponding attribute list index.
NFC
llvm-svn: 301666