No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179
Hwreg(...) syntax implementation unified with sendmsg(...).
Common strings moved to Utils
MathExtras.h functionality utilized.
Added missing build dependency in Disassembler.
Differential Revision: http://reviews.llvm.org/D20381
llvm-svn: 270871
Changes:
- Added disassembler project
- Fixed all decoding conflicts in .td files
- Added DecoderMethod=“NONE” option to Target.td that allows to
disable decoder generation for an instruction.
- Created decoding functions for VS_32 and VReg_32 register classes.
- Added stubs for decoding all register classes.
- Added several tests for disassembler
Disassembler only supports:
- VI subtarget
- VOP1 instruction encoding
- 32-bit register operands and inline constants
[Valery]
One of the point that requires to pay attention to is how decoder
conflicts were resolved:
- Groups of target instructions were separated by using different
DecoderNamespace (SICI, VI, CI) using similar to AssemblerPredicate
approach.
- There were conflicts in IMAGE_<> instructions caused by two
different reasons:
1. dmask wasn’t specified for the output (fixed)
2. There are image instructions that differ only by the number of
the address components but have the same encoding by the HW spec. The
actual number of address components is determined by the HW at runtime
using image resource descriptor starting from the VGPR encoded in an
IMAGE instruction. This means that we should choose only one instruction
from conflicting group to be the rule for decoder. I didn’t find the way
to disable decoder generation for an arbitrary instruction and therefore
made a onelinear fix to tablegen generator that would suppress decoder
generation when DecoderMethod is set to “NONE”. This is a change that
should be reviewed and submitted first. Otherwise I would need to
specify different DecoderNamespace for every instruction in the
conflicting group. I haven’t checked yet if DecoderMethod=“NONE” is not
used in other targets.
3. IMAGE_GATHER decoder generation is for now disabled and to be
done later.
[/Valery]
Patch By: Sam Kolton
Differential Revision: http://reviews.llvm.org/D16723
llvm-svn: 261185