Suffix opcodes with _gfx10.
Remove direct references to architecture specific opcodes.
Add a BVH flag and apply this to diassembly.
Fix a number of disassembly errors on gfx90a target caused by
previous incorrect BVH detection code.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D108117
Disable null export (for kills) when a frontend defines a pixel
shader as not exporting using amdgpu-color-export and
amdgpu-depth-export function attrbutes.
This allows the generation of export free pixel shaders.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D105683
A16 support for image instructions assembly/disassembly (gfx10) was missing
Also refactor MIMG op addr size calcs to common function
We'd got 3 places where the same operation was being done.
One test is now marked XFAIL until a related codegen patch is in place
Differential Revision: https://reviews.llvm.org/D102231
Change-Id: I7e86e730ef8c71901457855cba570581f4f576bb
The waitcnt pass would increment the number of vmem events for some buffer
invalidates that were not handled by the pass.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D102252
Preexisting waitcnt may not update the scoreboard if the instruction
being examined needed to wait on fewer counters than what was encoded in
the old waitcnt instruction. Fixing this results in the elimination of
some redudnat waitcnt.
These changes also enable combining consecutive waitcnt into a single
S_WAITCNT or S_WAITCNT_VSCNT instruction.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D100281
By convention, VOP1/2/C instructions which can be promoted to VOP3 have _e32 suffix while promoted instructions have _e64 suffix. Instructions which have a single variant should have no _e32/_e64 suffix. Unfortunately there was no simple way to identify single variant instructions - it was implemented by a hack. See bug https://bugs.llvm.org/show_bug.cgi?id=39086.
This fix simplifies handling of single VOP instructions by adding a dedicated flag.
Differential Revision: https://reviews.llvm.org/D99408
This instruction is only valid on 2D MSAA and 2D MSAA Array
surfaces. Remove intrinsic support for other dimension types,
and block assembly for unsupported dimensions.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D98397
Update the list of s_sendmsg messages known to the assembler and
disassembler and validate the ones that were added or removed in gfx9
and gfx10.
Differential Revision: https://reviews.llvm.org/D97295
Support for XNACK and SRAMECC is not static on some GPUs. We must be able
to differentiate between different scenarios for these dynamic subtarget
features.
The possible settings are:
- Unsupported: The GPU has no support for XNACK/SRAMECC.
- Any: Preference is unspecified. Use conservative settings that can run anywhere.
- Off: Request support for XNACK/SRAMECC Off
- On: Request support for XNACK/SRAMECC On
GCNSubtarget will track the four options based on the following criteria. If
the subtarget does not support XNACK/SRAMECC we say the setting is
"Unsupported". If no subtarget features for XNACK/SRAMECC are requested we
must support "Any" mode. If the subtarget features XNACK/SRAMECC exist in the
feature string when initializing the subtarget, the settings are "On/Off".
The defaults are updated to be conservatively correct, meaning if no setting
for XNACK or SRAMECC is explicitly requested, defaults will be used which
generate code that can be run anywhere. This corresponds to the "Any" setting.
Differential Revision: https://reviews.llvm.org/D85882
It's more future-proof to use isGFX10Plus from the start, on the
assumption that future architectures will be based on current
architectures.
Also make use of the existing isGFX9Plus in a few places.
Differential Revision: https://reviews.llvm.org/D92092
Add a calling convention called amdgpu_gfx for real function calls
within graphics shaders. For the moment, this uses the same calling
convention as other calls in amdgpu, with registers excluded for return
address, stack pointer and stack buffer descriptor.
Differential Revision: https://reviews.llvm.org/D88540
Previously, the default value for ieee mode was
- on for compute kernels and compute shaders,
- off for all shaders except compute shaders.
This commit changes the default to be
- on for compute kernels,
- off for shaders.
This aligns the default value with the settings that are actually in
use. To my knowledge, all users of shader calling conventions (mesa and
llpc) disable the ieee mode by default.
Differential Revision: https://reviews.llvm.org/D89388
Introduce a utility function to make it more
convenient to write code that is the same on
the GFX9 and GFX10 subtargets.
Use isGFX9Plus in the AsmParser for AMDGPU.
Authored By: Joe_Nash
Differential Revision: https://reviews.llvm.org/D88908
It was found some packed immediate operands (e.g. `<half 1.0, half 2.0>`) are
incorrectly processed so one of two packed values were lost.
Introduced new function to check immediate 32-bit operand can be folded.
Converted condition about current op_sel flags value to fall-through.
Fixes: SWDEV-247595
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D87158
Currently supported LLVM MTBUF syntax is shown below. It is not compatible with SP3.
op dst, addr, rsrc, FORMAT, soffset
This change adds support for SP3 syntax:
op dst, addr, rsrc, soffset SP3FORMAT
In addition to being compatible with SP3, this syntax allows using symbolic names for data, numeric and unified formats. Below is a list of added syntax variants.
format:<expression>
format:[<numeric-format-name>,<data-format-name>]
format:[<data-format-name>,<numeric-format-name>]
format:[<data-format-name>]
format:[<numeric-format-name>]
format:[<unified-format-name>]
The last syntax variant is supported for GFX10 only.
See llvm bug 37738
Reviewers: arsenm, rampitec, vpykhtin
Differential Revision: https://reviews.llvm.org/D84026
MTBUF implementation has many issues and this change addresses most of these:
- refactored duplicated code;
- hardcoded constants moved out of high-level code;
- fixed a decoding error when nfmt or dfmt are zero (bug 36932);
- corrected parsing of operand separators (bug 46403);
- corrected handling of missing operands (bug 46404);
- corrected handling of out-of-range modifiers (bug 46421);
- corrected default value (bug 46467).
Reviewers: arsenm, rampitec, vpykhtin, artem.tamazov, kzhuravl
Differential Revision: https://reviews.llvm.org/D83760
It seems to be a hardware defect that the half inline constants do not
work as expected for the 16-bit integer operations (the inverse does
work correctly). Experimentation seems to show these are really
reading the 32-bit inline constants, which can be observed by writing
inline asm using op_sel to see what's in the high half of the
constant. Theoretically we could fold the high halves of the 32-bit
constants using op_sel.
The *_asm_all.s MC tests are broken, and I don't know where the script
to autogenerate these are. I started manually fixing it, but there's
just too many cases to fix. This also does break the
assembler/disassembler support for these values, and I'm not sure what
to do about it. These are still valid encodings, so it seems like you
should be able to use them in some way. If you wrote assembly using
them, you could have really meant it (perhaps to read the high bits
with op_sel?). The disassembler will print the invalid literal
constant which will fail to re-assemble. The behavior is also
different depending on the use context. Consider this example, which
was previously accepted and encoded using the inline constant:
v_mad_i16 v5, v1, -4.0, v3
; encoding: [0x05,0x00,0xec,0xd1,0x01,0xef,0x0d,0x04]
In contexts where an inline immediate is required (such as on gfx8/9),
this will now be rejected. For gfx10, this will produce the literal
encoding and change the printed format:
v_mad_i16 v5, v1, 0xc400, v3
; encoding: [0x05,0x00,0x5e,0xd7,0x01,0xff,0x0d,0x04,0x00,0xc4,0x00,0x00]
This is just another variation of the issue that we don't perfectly
handle round trip assembly/disassembly due to not tracking how
immediates were encoded. This doesn't matter much in practice, since
compilers don't emit the suboptimal encoding. I doubt any users are
relying on this behavior (although I did make use of the old behavior
to figure out what was wrong).
Fixes bug 46302.
Summary: 'A' constraint requires an immediate int or fp constant that can be inlined in an instruction encoding.
Reviewers: arsenm, rampitec
Differential Revision: https://reviews.llvm.org/D78494
This was backwards from intended and missing a test. We perhaps should
just ignored the FP mode here, since it shouldn't be legal to mix code
with different default modes in the absence of strictfp.
Summary:
This fixes a few issues related to SMRD offsets. On gfx9 and gfx10 we have a
signed byte offset immediate, however we can overflow into a negative since we
treat it as unsigned.
Also, the SMRD SOFFSET sgpr is an unsigned offset on all subtargets. We
sometimes tried to use negative values here.
Third, S_BUFFER instructions should never use a signed offset immediate.
Differential Revision: https://reviews.llvm.org/D77082
This will likely introduce catastrophic performance regressions on
older subtargets, but should be correct. A follow up change will
remove the old fp32-denormals subtarget features, and switch to using
the new denormal-fp-math/denormal-fp-math-f32 attributes. Frontends
should be making sure to add the denormal-fp-math-f32 attribute when
appropriate to avoid performance regressions.
Summary: I think Max in the name was misleading. NFC.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76860
Summary:
These methods were identical. I chose to remove getMaxWavesPerCU because
I think Max in the name was misleading. NFC.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76859
Based on D72931
This adds a new feature called A16 which is enabled for gfx10.
gfx9 keeps the R128A16 feature so it can share all the instruction encodings
with gfx7/8.
Differential Revision: https://reviews.llvm.org/D73956
Prepare to accurately track the future denormal-fp-math attribute
changes. The way to actually set these separately is not wired in yet.
This is just a mechanical change, and mostly still assumes the input
and output mode match. This should be refined for some cases. For
example, fcanonicalize lowering should use the flushing variant if
either input or output flushing is enabled
I believe this also fixes bugs with CI 32-bit handling, which was
incorrectly skipping offsets that look like signed 32-bit values. Also
validate the offsets are dword aligned before folding.
Start moving towards treating this as a property of the calling
convention, and not the subtarget. The default denormal mode should
not be part of the subtarget, and be moved into a separate function
attribute.
This patch is still NFC. The denormal mode remains as a subtarget
feature for now, but make the necessary changes to switch to using an
attribute.
The default FP mode should really be a property of a specific
function, and not a subtarget. Introduce the necessary fields to the
SIMachineFunctionInfo to help move towards this goal.