As a part of D107642, this adds pseudo instructions for MQQPR and
MQQQQPR register classes, that can spill and reloads entire registers
whilst keeping them combined, not splitting them into multiple D subregs
that a VLDMIA/VSTMIA would use. This can help certain analyses, and
helps to prevent verifier issues with subreg liveness.
This assert is intended to ensure that the high registers are not
selected when it is passed to one of the thumb UXT instructions. However
it was triggering even for 32 bit where no UXT instruction is emitted.
Fixes PR51313.
Differential Revision: https://reviews.llvm.org/D107363
Based on the same for AArch64: 4751cadcca
At -O0, the fast register allocator may insert spills between the ldrex and
strex instructions inserted by AtomicExpandPass when expanding atomicrmw
instructions in LL/SC loops. To avoid this, expand to cmpxchg loops and
therefore expand the cmpxchg pseudos after register allocation.
Required a tweak to ARMExpandPseudo::ExpandCMP_SWAP to use the 4-byte encoding
of UXT, since the pseudo instruction can be allocated a high register (R8-R15)
which the 2-byte encoding doesn't support. However, the 4-byte encodings
are not present for ARM v8-M Baseline. To enable this, two new pseudos are
added for Thumb which are only valid for v8mbase, tCMP_SWAP_8 and
tCMP_SWAP_16.
The previously committed attempt in D101164 had to be reverted due to runtime
failures in the test suites. Rather than spending time fixing that
implementation (adding another implementation of atomic operations and more
divergence between backends) I have chosen to follow the approach taken in
D101163.
Differential Revision: https://reviews.llvm.org/D101898
Depends on D101912
atomicrmw instructions are expanded by AtomicExpandPass before register allocation
into cmpxchg loops. Register allocation can insert spills between the exclusive loads
and stores, which invalidates the exclusive monitor and can lead to infinite loops.
To avoid this, reimplement atomicrmw operations as pseudo-instructions and expand them
after register allocation.
Floating point legalisation:
f16 ATOMIC_LOAD_FADD(*f16, f16) is legalised to
f32 ATOMIC_LOAD_FADD(*i16, f32) and then eventually
f32 ATOMIC_LOAD_FADD_16(*i16, f32)
Differential Revision: https://reviews.llvm.org/D101164
Originally submitted as 3338290c18.
Reverted in c7df6b1223.
atomicrmw instructions are expanded by AtomicExpandPass before register allocation
into cmpxchg loops. Register allocation can insert spills between the exclusive loads
and stores, which invalidates the exclusive monitor and can lead to infinite loops.
To avoid this, reimplement atomicrmw operations as pseudo-instructions and expand them
after register allocation.
Floating point legalisation:
f16 ATOMIC_LOAD_FADD(*f16, f16) is legalised to
f32 ATOMIC_LOAD_FADD(*i16, f32) and then eventually
f32 ATOMIC_LOAD_FADD_16(*i16, f32)
Differential Revision: https://reviews.llvm.org/D101164
Currently needsStackRealignment returns false if canRealignStack returns false.
This means that the behavior of needsStackRealignment does not correspond to
it's name and description; a function might need stack realignment, but if it
is not possible then this function returns false. Furthermore,
needsStackRealignment is not virtual and therefore some backends have made use
of canRealignStack to indicate whether a function needs stack realignment.
This patch attempts to clarify the situation by separating them and introducing
new names:
- shouldRealignStack - true if there is any reason the stack should be
realigned
- canRealignStack - true if we are still able to realign the stack (e.g. we
can still reserve/have reserved a frame pointer)
- hasStackRealignment = shouldRealignStack && canRealignStack (not target
customisable)
Targets can now override shouldRealignStack to indicate that stack realignment
is required.
This change will make it easier in a future change to handle the case where we
need to realign the stack but can't do so (for example when the register
allocator creates an aligned spill after the frame pointer has been
eliminated).
Differential Revision: https://reviews.llvm.org/D98716
Change-Id: Ib9a4d21728bf9d08a545b4365418d3ffe1af4d87
As a linker is allowed to clobber r12 on function calls, the code
transformation that hardens indirect calls is not correct in case a
linker does so. Similarly, the transformation is not correct when
register lr is used.
This patch makes sure that r12 or lr are not used for indirect calls
when harden-sls-blr is enabled.
Differential Revision: https://reviews.llvm.org/D92469
Optimize some specific immediates selection by materializing them with sub/mvn
instructions as opposed to loading them from the constant pool.
Patch by Ben Shi, powerman1st@163.com.
Differential Revision: https://reviews.llvm.org/D83745
Vector bitwise selects are matched by pseudo VBSP instruction
and expanded to VBSL/VBIT/VBIF after register allocation
depend on operands registers to minimize extra copies.
The VLLDM and VLSTM instructions are incompletely specified. They
(potentially) write (or read, respectively) registers Q0-Q7, VPR, and
FPSCR, but the compiler is unaware of it.
In the new test case `cmse-vlldm-no-reorder.ll` case the compiler
missed an anti-dependency and reordered a `VLLDM` ahead of the
instruction, which stashed the return value from the non-secure call,
effectively clobbering said value.
This test case does not fail with upstream LLVM, because of scheduling
differences and I couldn't find a test case for the VLSTM either.
Differential Revision: https://reviews.llvm.org/D81586
Summary:
Instead of generating two i32 instructions for each load or store of a volatile
i64 value (two LDRs or STRs), now emit LDRD/STRD.
These improvements cover architectures implementing ARMv5TE or Thumb-2.
The code generation explicitly deviates from using the register-offset
variant of LDRD/STRD. In this variant, the register allocated to the
register-offset cannot be reused in any of the remaining operands. Such
restriction seems to be non-trivial to implement in LLVM, thus it is
left as a to-do.
Differential Revision: https://reviews.llvm.org/D70072
This reverts commit 8a12553223.
A bug has been found when generating code for Thumb2. In some very
specific cases, the prologue/epilogue emitter generates erroneous stack
offsets for the new LDRD instructions that access the stack.
This bug does not seem to be caused by the reverted patch though. Likely
the latter has made an undiscovered issue emerge in the
prologue/epilogue emission pass. Nevertheless, this reversion is
necessary since it is blocking users of the ARM backend.
This patch implements the final bits of CMSE code generation:
* emit special linker symbols
* restrict parameter passing to no use memory
* emit BXNS and BLXNS instructions for returns from non-secure entry
functions, and non-secure function calls, respectively
* emit code to save/restore secure floating-point state around calls
to non-secure functions
* emit code to save/restore non-secure floating-pointy state upon
entry to non-secure entry function, and return to non-secure state
* emit code to clobber registers not used for arguments and returns
* when switching to no-secure state
Patch by Momchil Velikov, Bradley Smith, Javed Absar, David Green,
possibly others.
Differential Revision: https://reviews.llvm.org/D76518
This patch implements the final bits of CMSE code generation:
* emit special linker symbols
* restrict parameter passing to not use memory
* emit BXNS and BLXNS instructions for returns from non-secure entry
functions, and non-secure function calls, respectively
* emit code to save/restore secure floating-point state around calls
to non-secure functions
* emit code to save/restore non-secure floating-pointy state upon
entry to non-secure entry function, and return to non-secure state
* emit code to clobber registers not used for arguments and returns
when switching to no-secure state
Patch by Momchil Velikov, Bradley Smith, Javed Absar, David Green,
possibly others.
Differential Revision: https://reviews.llvm.org/D76518
It can be used to avoid passing the begin and end of a range.
This makes the code shorter and it is consistent with another
wrappers we already have.
Differential revision: https://reviews.llvm.org/D78016
If the stack pointer is altered for local variables and we are generating
Thumb2 execute-only code the .pad directive is missing.
Usually the size of the adjustment is stored in a PC-relative location
and loaded into a register which is then added to the stack pointer.
However when we are generating execute-only code code the size of the
adjustment is instead generated using the MOVW/MOVT instruction pair.
As a by product of handling the execute-only case this also fixes an
existing issue that in the none execute-only case the .pad directive was
generated against the load of the constant to a register instruction,
instead of the instruction which adds the register to the stack pointer.
Differential Revision: https://reviews.llvm.org/D76849
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jholewinski, arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76348
Summary:
Instead of generating two i32 instructions for each load or store of a volatile
i64 value (two LDRs or STRs), now emit LDRD/STRD.
These improvements cover architectures implementing ARMv5TE or Thumb-2.
The code generation explicitly deviates from using the register-offset
variant of LDRD/STRD. In this variant, the register allocated to the
register-offset cannot be reused in any of the remaining operands. Such
restriction seems to be non-trivial to implement in LLVM, thus it is
left as a to-do.
Reviewers: dmgreen, efriedma, john.brawn, nickdesaulniers
Reviewed By: efriedma, nickdesaulniers
Subscribers: danielkiss, alanphipps, hans, nathanchance, nickdesaulniers, vvereschaka, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70072
Use the isCandidateForCallSiteEntry().
This should mostly be an NFC, but there are some parts ensuring
the moveCallSiteInfo() and copyCallSiteInfo() operate with call site
entry candidates (both Src and Dest should be the call site entry
candidates).
Differential Revision: https://reviews.llvm.org/D74122
Summary:
Instead of generating two i32 instructions for each load or store of a volatile
i64 value (two LDRs or STRs), now emit LDRD/STRD.
These improvements cover architectures implementing ARMv5TE or Thumb-2.
Reviewers: dmgreen, efriedma, john.brawn, nickdesaulniers
Reviewed By: efriedma, nickdesaulniers
Subscribers: nickdesaulniers, vvereschaka, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70072
Summary:
Instead of generating two i32 instructions for each load or store of a volatile
i64 value (two LDRs or STRs), now emit LDRD/STRD.
These improvements cover architectures implementing ARMv5TE or Thumb-2.
Reviewers: dmgreen, efriedma, john.brawn
Reviewed By: efriedma
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70072
Summary:
In the cases where the CMOV (f16) SDNode is used with condition codes
LT, LE, VC or NE, it is successfully selected into a VSEL instruction.
In the remaining cases, however, instruction selection fails since VSEL
does not support other condition codes.
This patch handles such cases by using the single-precision version of
the VMOV instruction.
Reviewers: ostannard, dmgreen
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70667
During the If-Converter optimization pay attention when copying or
deleting call instructions in order to keep call site information in
valid state.
Reviewers: aprantl, vsk, efriedma
Reviewed By: vsk, efriedma
Differential Revision: https://reviews.llvm.org/D66955
llvm-svn: 374068
Support for tracking registers that forward function parameters into the
following function frame. For now we only support cases when parameter
is forwarded through single register.
Reviewers: aprantl, vsk, t.p.northover
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D66953
llvm-svn: 374033
Push LR register before calling __gnu_mcount_nc as it expects the value of LR register to be the top value of
the stack on ARM32.
Differential Revision: https://reviews.llvm.org/D65019
llvm-svn: 369147
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
Currently shufflemasks get emitted as any other constant, and you end
up with a bunch of virtual registers of G_CONSTANT with a
G_BUILD_VECTOR. The AArch64 selector then asserts on anything that
doesn't fit this pattern. This isn't an ideal representation, and
should avoid legalization and have fewer opportunities for a
representational error.
Rather than invent a new shuffle mask operand type, similar to what
ShuffleVectorSDNode does, just track the original IR Constant mask
operand. I don't completely like the idea of adding another link to
the IR, but MIR is already quite dependent on IR constants already,
and this will allow sharing the shuffle mask utility functions with
the IR.
llvm-svn: 368704
This pass wasn't printing any messages at all, which I find really inconvenient
while debugging/tracing things. It now dumps the before and after of expanded
instructions. It doesn't do this yet for all instructions, but this is a good
start I guess.
Differential Revision: https://reviews.llvm.org/D62297
llvm-svn: 361604
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
llvm-svn: 339940
These are all benign races and only visible in !NDEBUG. tsan complains
about it, but a simple atomic bool is sufficient to make it happy.
llvm-svn: 335823
This patch adds support for the q versions of the dup
(load-to-all-lanes) NEON intrinsics, such as vld2q_dup_f16() for
example.
Currently, non-q versions of the dup intrinsics are implemented
in clang by generating IR that first loads the elements of the
structure into the first lane with the lane (to-single-lane)
intrinsics, and then propagating it other lanes. There are at
least two problems with this approach. First, there are no
double-spaced to-single-lane byte-element instructions. For
example, there is no such instruction as 'vld2.8 { d0[0], d2[0]
}, [r0]'. That means we cannot rely on the to-single-lane
intrinsics and instructions to implement the q versions of the
dup intrinsics. Note that to-all-lanes instructions do support
all sizes of data items, including bytes.
The second problem with the current approach is that we need a
separate vdup instruction to propagate the structure to each
lane. So for vld4q_dup_f16() we would need four vdup instructions
in addition to the initial vld instruction.
This patch introduces dup LLVM intrinsics and reworks handling of
the currently supported (non-q) NEON dup intrinsics to expand
them into those LLVM intrinsics, thus eliminating the need for
using to-single-lane intrinsics and instructions.
Additionally, this patch adds support for u64 and s64 dup NEON
intrinsics. These are marked as Arch64-only in the ARM NEON
Reference, but it seems there are no reasons to not support them
in AArch32 mode. Please correct, if that is wrong.
That's what we generate with this patch applied:
vld2q_dup_f16:
vld2.16 {d0[], d2[]}, [r0]
vld2.16 {d1[], d3[]}, [r0]
vld3q_dup_f16:
vld3.16 {d0[], d2[], d4[]}, [r0]
vld3.16 {d1[], d3[], d5[]}, [r0]
vld4q_dup_f16:
vld4.16 {d0[], d2[], d4[], d6[]}, [r0]
vld4.16 {d1[], d3[], d5[], d7[]}, [r0]
Differential Revision: https://reviews.llvm.org/D48439
llvm-svn: 335733
We currently support them only in AArch64. The NEON Reference,
however, says they are 'ARMv7, ARMv8' intrinsics.
Differential Revision: https://reviews.llvm.org/D47447
llvm-svn: 334361