getVectorNumElements() returns a value for scalable vectors
without any warning so it is effectively getVectorMinNumElements().
By renaming it and making getVectorNumElements() forward to
it, we can insert a check for scalable vectors into getVectorNumElements()
similar to EVT. I didn't do that in this patch because there are still more
fixes needed, but I was able to temporarily do it and passed the RISCV
lit tests with these changes.
The changes to isPow2VectorType and getPow2VectorType are copied from EVT.
The change to TypeInfer::EnforceSameNumElts reduces the size of AArch64's isel table.
We're now considering SameNumElts to require the scalable property to match which
removes some unneeded type checks.
This was motivated by the bug I fixed yesterday in 80b9510806
Reviewed By: frasercrmck, sdesmalen
Differential Revision: https://reviews.llvm.org/D102262
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from
if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
to
if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
Introduce a getValueAsBool that normalize the check, with the following
behavior:
no attributes or attribute set to "false" => return false
attribute set to "true" => return true
Differential Revision: https://reviews.llvm.org/D99299
Previously uniqueCallSite could have race conditions between different
threads. Now it is accessed with an atomic RMW and will be unique
between different threads.
Differential Revision: https://reviews.llvm.org/D94784
In most of lib/Target we know that we are not dealing with scalable
types so it's perfectly fine to replace TypeSize comparison operators
with their fixed width equivalents, making use of getFixedSize()
and so on.
Differential Revision: https://reviews.llvm.org/D89101
This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().
I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.
Differential Revision: https://reviews.llvm.org/D78882
AMDGPU and x86 at least both have separate controls for whether
denormal results are flushed on output, and for whether denormals are
implicitly treated as 0 as an input. The current DAGCombiner use only
really cares about the input treatment of denormals.
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73885
Currently there are 4 different mechanisms for controlling denormal
flushing behavior, and about as many equivalent frontend controls.
- AMDGPU uses the fp32-denormals and fp64-f16-denormals subtarget features
- NVPTX uses the nvptx-f32ftz attribute
- ARM directly uses the denormal-fp-math attribute
- Other targets indirectly use denormal-fp-math in one DAGCombine
- cl-denorms-are-zero has a corresponding denorms-are-zero attribute
AMDGPU wants a distinct control for f32 flushing from f16/f64, and as
far as I can tell the same is true for NVPTX (based on the attribute
name).
Work on consolidating these into the denormal-fp-math attribute, and a
new type specific denormal-fp-math-f32 variant. Only ARM seems to
support the two different flush modes, so this is overkill for the
other use cases. Ideally we would error on the unsupported
positive-zero mode on other targets from somewhere.
Move the logic for selecting the flush mode into the compiler driver,
instead of handling it in cc1. denormal-fp-math/denormal-fp-math-f32
are now both cc1 flags, but denormal-fp-math-f32 is not yet exposed as
a user flag.
-cl-denorms-are-zero, -fcuda-flush-denormals-to-zero and
-fno-cuda-flush-denormals-to-zero will be mapped to
-fp-denormal-math-f32=ieee or preserve-sign rather than the old
attributes.
Stop emitting the denorms-are-zero attribute for the OpenCL flag. It
has no in-tree users. The meaning would also be target dependent, such
as the AMDGPU choice to treat this as only meaning allow flushing of
f32 and not f16 or f64. The naming is also potentially confusing,
since DAZ in other contexts refers to instructions implicitly treating
input denormals as zero, not necessarily flushing output denormals to
zero.
This also does not attempt to change the behavior for the current
attribute. The LangRef now states that the default is ieee behavior,
but this is inaccurate for the current implementation. The clang
handling is slightly hacky to avoid touching the existing
denormal-fp-math uses. Fixing this will be left for a future patch.
AMDGPU is still using the subtarget feature to control the denormal
mode, but the new attribute are now emitted. A future change will
switch this and remove the subtarget features.
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
object file size.
- Incremental step towards decoupling target intrinsics.
The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.
Part of PR34259
Reviewers: efriedma, echristo, MaskRay
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D71320
Rename old function to explicitly show that it cares only about alignment.
The new allowsMemoryAccess call the function related to alignment by default
and can be overridden by target to inform whether the memory access is legal or
not.
Differential Revision: https://reviews.llvm.org/D67121
llvm-svn: 372935
* Reordered MVT simple types to group scalable vector types
together.
* New range functions in MachineValueType.h to only iterate over
the fixed-length int/fp vector types.
* Stopped backends which don't support scalable vector types from
iterating over scalable types.
Reviewers: sdesmalen, greened
Reviewed By: greened
Differential Revision: https://reviews.llvm.org/D66339
llvm-svn: 372099
Summary:
This is patch is part of a serie to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, jfb, jakehehrlich
Reviewed By: jfb
Subscribers: wuzish, jholewinski, arsenm, dschuff, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65514
llvm-svn: 367828
Summary:
- Use the passed `DL` directly as retrieving data layout from CS by
checking the called function is not reliable. Under indirect function
call, there is no called function.
Subscribers: jholewinski, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65468
llvm-svn: 367349
As suggested by @arsenm on D63075 - this adds a TargetLowering::allowsMemoryAccess wrapper that takes a Load/Store node's MachineMemOperand to handle the AddressSpace/Alignment arguments and will also implicitly handle the MachineMemOperand::Flags change in D63075.
llvm-svn: 363048
All of the new instructions are still handled mostly by tablegen. I've slightly
refactored the code to drive intrinsic/instruction generation from a master
list of supported variants, so all irregularities have to be implemented in one place only.
The test generation script wmma.py has been refactored in a similar way.
Differential Revision: https://reviews.llvm.org/D60015
llvm-svn: 359247
Summary:
Previously, we translate llvm.round to PTX cvt.rni, which rounds to the
even interger when the source is equidistant between two integers. This
is not correct as llvm.round should round away from zero. This change
replaces llvm.round with a round away from zero implementation through
target specific custom lowering.
Modify a few affected tests to not check for cvt.rni. Instead, we check
for the use of a few constants used in implementing round. We are also
adding CUDA runnable tests to check for the values produced by
llvm.round to test-suites/External/CUDA.
Reviewers: tra
Subscribers: jholewinski, sanjoy, jlebar, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59947
llvm-svn: 357407
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The patch adds a possibility to make library calls on NVPTX.
An important thing about library functions - they must be defined within
the current module. This basically should guarantee that we produce a
valid PTX assembly (without calls to not defined functions). The one who
wants to use the libcalls is probably will have to link against
compiler-rt or any other implementation.
Currently, it's completely impossible to make library calls because of
error LLVM ERROR: Cannot select: i32 = ExternalSymbol '...'. But we can
lower ExternalSymbol to TargetExternalSymbol and verify if the function
definition is available.
Also, there was an issue with a DAG during legalisation. When we expand
instruction into libcall, the inner call-chain isn't being "integrated"
into outer chain. Since the last "data-flow" (call retval load) node is
located in call-chain earlier than CALLSEQ_END node, the latter becomes
a leaf and therefore a dead node (and is being removed quite fast).
Proposed here solution relies on another data-flow pseudo nodes
(ProxyReg) which purpose is only to keep CALLSEQ_END at legalisation and
instruction selection phases - we remove the pseudo instructions before
register scheduling phase.
Patch by Denys Zariaiev!
Differential Revision: https://reviews.llvm.org/D34708
llvm-svn: 350069
The change is an effort to split and refactor abandoned
D34708 into smaller parts.
Here the behaviour of unsupported instructions is changed
to match the behaviour of explicit intrinsics calls.
Currently LLVM crashes with:
> Assertion getInstruction() && "Not a call or invoke instruction!" failed.
With this patch LLVM produces a more sensible error message:
> Cannot select: ... i32 = ExternalSymbol'__foobar'
Author: Denys Zariaiev <denys.zariaiev@gmail.com>
Differential Revision: https://reviews.llvm.org/D55145
llvm-svn: 349213
The main caller of this already has an MVT and several targets called getSimpleVT inside without checking isSimple. This makes the simpleness explicit.
llvm-svn: 346180
Summary:
Changes all uses of minnan/maxnan to minimum/maximum
globally. These names emphasize that the semantic difference between
these operations is more than just NaN-propagation.
Reviewers: arsenm, aheejin, dschuff, javed.absar
Subscribers: jholewinski, sdardis, wdng, sbc100, jgravelle-google, jrtc27, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D53112
llvm-svn: 345218
Summary:
They've been deprecated in favor of UADDO/ADDCARRY or USUBO/SUBCARRY for a while.
Target that uses these opcodes are changed in order to ensure their behavior doesn't change.
Reviewers: efriedma, craig.topper, dblaikie, bkramer
Subscribers: jholewinski, arsenm, jyknight, sdardis, nemanjai, nhaehnle, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D47422
llvm-svn: 333748
This reapplies commits: r330271, r330592, r330779.
[DEBUG] Initial adaptation of NVPTX target for debug info emission.
Summary:
Patch adds initial emission of the debug info for NVPTX target.
Currently, only .file and .loc directives are emitted, everything else is
commented out to not break the compilation of Cuda.
llvm-svn: 332689
Const/local/shared address spaces are all < 4GB and we can always use
32-bit pointers to access them. This has substantial performance impact
on kernels that uses shared memory for intermediary results.
The feature is disabled by default.
Differential Revision: https://reviews.llvm.org/D46147
llvm-svn: 331941
This appears to have some issues associated with the file directive output
causing multiple global symbols with the name "file" to be emitted into a
startup section. I'm investigating more specific causes and working with the
original author.
This reverts commit r330271.
Also Revert "[DEBUGINFO, NVPTX] Add the test for the debug info of the local"
This reverts commit r330592 and the follow up of 330779 as the testcase is dependent upon r330271.
llvm-svn: 331237
There's no direct instruction for this, but it's trivially implemented
with two movs. Without this the code generator just dies when
encountering a shufflevector.
Differential Revision: https://reviews.llvm.org/D46116
llvm-svn: 330948
Summary:
Patch adds initial emission of the debug info for NVPTX target.
Currently, only .file and .loc directives are emitted, everything else is
commented out to not break the compilation of Cuda.
Reviewers: echristo, jlebar, tra, jholewinski
Subscribers: mgorny, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41827
llvm-svn: 330271
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
llvm-svn: 328395
This is needed for the upcoming implementation of the
new 8x32x16 and 32x8x16 variants of WMMA instructions
introduced in CUDA 9.1.
Differential Revision: https://reviews.llvm.org/D44719
llvm-svn: 328158
This way we can support address-space specific variants without explicitly
encoding the space in the name of the intrinsic. Less intrinsics to deal with ->
less boilerplate.
Added a bit of tablegen magic to match/replace an intrinsics with a pointer
argument in particular address space with the space-specific instruction
variant.
Updated tests to use non-default address spaces.
Differential Revision: https://reviews.llvm.org/D43268
llvm-svn: 328006