Commit Graph

326 Commits

Author SHA1 Message Date
Han Zhu 687f046c97 [NFC][loop-idiom] Rename Stores to IgnoredInsts; Fix a typo
When dealing with memmove, we also add the load instruction to the ignored
instructions list passed to `mayLoopAccessLocation`. Renaming "Stores" to
"IgnoredInsts" to be more precise.

Differential Revision: https://reviews.llvm.org/D108275
2021-08-18 10:52:16 -07:00
eopXD 012173680f [LoopIdiom] let the pass deal with runtime memset size
The current LIR does not deal with runtime-determined memset-size. This patch
utilizes SCEV and check if the PointerStrideSCEV and the MemsetSizeSCEV are equal.
Before comparison the pass would try to fold the expression that is already
protected by the loop guard.

Testcase file `memset-runtime.ll`, `memset-runtime-debug.ll` added.

This patch deals with proper loop-idiom. Proceeding patch wants to deal with SCEV-s
that are inequal after folding with the loop guards.

Reviewed By: lebedev.ri, Whitney

Differential Revision: https://reviews.llvm.org/D107353
2021-08-14 19:22:06 +08:00
eopXD fd7f6a3c81 [NFC][LoopIdiom] rename boolean variable NegStride to IsNegStride
Rename variable for better code readability.

Reviewed By: lebedev.ri

Differential Revision: https://reviews.llvm.org/D107570
2021-08-05 23:11:42 +08:00
eopXD 26aa1bbe97 [NFCI] [LoopIdiom] Let processLoopStridedStore take StoreSize as SCEV instead of unsigned
Letting it take SCEV allows further modification on the function to optimize
if the StoreSize / Stride is runtime determined.

This is a preceeding of D107353.
The big picture is to let LoopIdiom deal with runtime-determined sizes.

Reviewed By: Whitney, lebedev.ri

Differential Revision: https://reviews.llvm.org/D104595
2021-08-05 13:21:48 +08:00
Dawid Jurczak 11338e998d [LoopIdiom] Transform memmove-like loop into memmove (PR46179)
The purpose of patch is to learn Loop idiom recognition pass how to recognize simple memmove patterns
in similar way like GCC: https://godbolt.org/z/fh95e83od
LoopIdiomRecognize already has machinery for memset and memcpy recognition, patch tries to extend exisiting capabilities with minimal effort.

Differential Revision: https://reviews.llvm.org/D104464
2021-07-22 13:05:43 +02:00
Jon Roelofs 37b6e03c18 [Intrinsics] Make MemCpyInlineInst a MemCpyInst
This opens up more optimization opportunities in passes that already handle MemCpyInst's.

Differential revision: https://reviews.llvm.org/D105247
2021-07-02 10:25:24 -07:00
Philip Reames 7629b2a09c [LI] Add a cover function for checking if a loop is mustprogress [nfc]
Essentially, the cover function simply combines the loop level check and the function level scope into one call.  This simplifies several callers and is (subjectively) less error prone.
2021-06-10 13:37:32 -07:00
Roman Lebedev 149e018d12
[LoopIdiom] 'arithmetic right-shift until zero': don't turn potentially infinite loops into finite ones
Nowadays LLVM does not assume that all loops are finite,
so if we want to produce a finite loop from a potentially-infinite one,
we must ensure that the original loop is known to be a finite one.

For this transform, it only matters for arithmetic right-shifts.
For them, either the function or the loop must be known to
be `mustprogress`, or the original value being shifted must be known
to be non-negative (because iff the sign bit was set,
it will never become zero, but will become `-1` in the "end").

It would be really good for alive2 to actually complain about this,
but it currently does not: https://github.com/AliveToolkit/alive2/issues/726
2021-05-25 21:02:28 +03:00
Roman Lebedev 8f4db14d1c
[LoopIdiom] Support 'left-shift until zero' idiom
This adds support for the "count active bits" pattern, i.e.:
```
int countBits(unsigned val) {
    int cnt = 0;
    for( ; (val << cnt) != 0; ++cnt)
        ;
    return cnt;
}
```
but a somewhat more general one:
```
int countBits(unsigned val, int start, int off) {
    int cnt;
    for (cnt = start; val << (cnt + off); cnt++)
        ;
    return cnt;
}
```

alive2 is happy with all the tests there.

Note that, again, much like with the right-shift cases,
we don't require the `val != 0` guard.

This is the last pattern that was supported by
`detectShiftUntilZeroIdiom()`, which now becomes obsolete.
2021-05-25 15:26:35 +03:00
Roman Lebedev f1c5f78d38
[LoopIdiom] Support 'arithmetic right-shift until zero' idiom
This adds support for the "count active bits" pattern, i.e.:
```
int countActiveBits(signed val) {
    int cnt = 0;
    for( ; (val >> cnt) != 0; ++cnt)
        ;
    return cnt;
}
```
but a somewhat more general one:
```
int countActiveBits(signed val, int start, int off) {
    int cnt;
    for (cnt = start; val >> (cnt + off); cnt++)
        ;
    return cnt;
}
```

This directly matches the existing 'logical right-shift until zero' idiom.
alive2 is happy with all the tests there.

Note that, again, much like with the original unsigned case,
we don't require the `val != 0` guard.

The old `detectShiftUntilZeroIdiom()` already supports this pattern,
the idea here is that the `val` must be positive (have at least one
leading zero), because otherwise the loop is non-terminating,
but since it is not `while(1)`, that would have been UB.
2021-05-25 14:30:49 +03:00
Roman Lebedev 32bee42719
[NFCI][LoopIdiom] 'left-shift until bittest': assert that BaseX is loop-invariant
Given that BaseX is an incoming value when coming from the preheader,
it *should* be loop-invariant, but let's just document this assumption.
2021-05-24 12:15:06 +03:00
Roman Lebedev aa3dac95ed
[LoopIdiom] 'logical right shift until zero': the value must be loop-invariant
As per the reproducer provided by Mikael Holmén in post-commit review.
2021-05-24 12:15:06 +03:00
Roman Lebedev 0633d5ce7b
[LoopIdiom] 'logical right-shift until zero' ('count active bits') "on steroids" idiom recognition.
I think i've added exhaustive test coverage, and i have verified that alive2 is happy with all the tests,
so in principle i'm fine with landing this without review, but just in case..

This adds support for the "count active bits" pattern, i.e.:
```
int countActiveBits(unsigned val) {
    int cnt = 0;
    for( ; (val >> cnt) != 0; ++cnt)
        ;
    return cnt;
}
```
but a somewhat more general one, since that is what i need:
```
int countActiveBits(unsigned val, int start, int off) {
    int cnt;
    for (cnt = start; val >> (cnt + off); cnt++)
        ;
    return cnt;
}
```

I've followed in footstep of 'left-shift until bittest' idiom (D91038),
in the sense that iff the `ctlz` intrinsic is cheap, we'll transform,
regardless of all other factors.

This can have a shocking effect on certain benchmarks:
```
raw.pixls.us-unique/Olympus/XZ-1$ /repositories/googlebenchmark/tools/compare.py -a benchmarks ~/rawspeed/build-{old,new}/src/utilities/rsbench/rsbench --benchmark_counters_tabular=true --benchmark_min_time=0.00000001 --benchmark_repetitions=128 p1319978.orf
RUNNING: /home/lebedevri/rawspeed/build-old/src/utilities/rsbench/rsbench --benchmark_counters_tabular=true --benchmark_min_time=0.00000001 --benchmark_repetitions=128 p1319978.orf --benchmark_display_aggregates_only=true --benchmark_out=/tmp/tmp49_28zcm
2021-05-09T01:06:05+03:00
Running /home/lebedevri/rawspeed/build-old/src/utilities/rsbench/rsbench
Run on (32 X 3600.24 MHz CPU s)
CPU Caches:
  L1 Data 32 KiB (x16)
  L1 Instruction 32 KiB (x16)
  L2 Unified 512 KiB (x16)
  L3 Unified 32768 KiB (x2)
Load Average: 5.26, 6.29, 3.49
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Benchmark                                                      Time             CPU   Iterations  CPUTime,s CPUTime/WallTime     Pixels Pixels/CPUTime Pixels/WallTime Raws/CPUTime Raws/WallTime WallTime,s
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
p1319978.orf/threads:32/process_time/real_time_mean          145 ms          145 ms          128   0.145319         0.999981   10.1568M       69.8949M        69.8936M      6.88159       6.88146   0.145322
p1319978.orf/threads:32/process_time/real_time_median        145 ms          145 ms          128   0.145317         0.999986   10.1568M       69.8941M        69.8931M      6.88151       6.88141   0.145319
p1319978.orf/threads:32/process_time/real_time_stddev      0.766 ms        0.766 ms          128   766.586u         15.1302u          0       354.167k        354.098k    0.0348699     0.0348631   766.469u
RUNNING: /home/lebedevri/rawspeed/build-new/src/utilities/rsbench/rsbench --benchmark_counters_tabular=true --benchmark_min_time=0.00000001 --benchmark_repetitions=128 p1319978.orf --benchmark_display_aggregates_only=true --benchmark_out=/tmp/tmpwb9sw2x0
2021-05-09T01:06:24+03:00
Running /home/lebedevri/rawspeed/build-new/src/utilities/rsbench/rsbench
Run on (32 X 3599.95 MHz CPU s)
CPU Caches:
  L1 Data 32 KiB (x16)
  L1 Instruction 32 KiB (x16)
  L2 Unified 512 KiB (x16)
  L3 Unified 32768 KiB (x2)
Load Average: 4.05, 5.95, 3.43
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Benchmark                                                      Time             CPU   Iterations  CPUTime,s CPUTime/WallTime     Pixels Pixels/CPUTime Pixels/WallTime Raws/CPUTime Raws/WallTime WallTime,s
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
p1319978.orf/threads:32/process_time/real_time_mean         99.8 ms         99.8 ms          128  0.0997758         0.999972   10.1568M       101.797M        101.794M      10.0225       10.0222  0.0997786
p1319978.orf/threads:32/process_time/real_time_median       99.7 ms         99.7 ms          128  0.0997165         0.999985   10.1568M       101.857M        101.854M      10.0284       10.0281  0.0997195
p1319978.orf/threads:32/process_time/real_time_stddev      0.224 ms        0.224 ms          128   224.166u          34.345u          0        226.81k        227.231k    0.0223309     0.0223723   224.586u
Comparing /home/lebedevri/rawspeed/build-old/src/utilities/rsbench/rsbench to /home/lebedevri/rawspeed/build-new/src/utilities/rsbench/rsbench
Benchmark                                                               Time             CPU      Time Old      Time New       CPU Old       CPU New
----------------------------------------------------------------------------------------------------------------------------------------------------
p1319978.orf/threads:32/process_time/real_time_pvalue                 0.0000          0.0000      U Test, Repetitions: 128 vs 128
p1319978.orf/threads:32/process_time/real_time_mean                  -0.3134         -0.3134           145           100           145           100
p1319978.orf/threads:32/process_time/real_time_median                -0.3138         -0.3138           145           100           145           100
p1319978.orf/threads:32/process_time/real_time_stddev                -0.7073         -0.7078             1             0             1             0

```

Reviewed By: craig.topper, zhuhan0

Differential Revision: https://reviews.llvm.org/D102116
2021-05-17 20:33:33 +03:00
Han Zhu da1cdffbb1 [loop-idiom] Hoist loop memcpys to loop preheader
For a simple loop like:
```
struct S {
  int x;
  int y;
  char b;
};

unsigned foo(S* __restrict__ a, S* b, int n) {
  for (int i = 0; i < n; i++)
    a[i] = b[i];

  return sizeof(a[0]);
}
```
We could eliminate the loop and convert it to a large memcpy of 12*n bytes. Currently this is not handled. Output of `opt -loop-idiom -S < memcpy_before.ll`
```
%struct.S = type { i32, i32, i8 }

define dso_local i32 @_Z3fooP1SS0_i(%struct.S* noalias nocapture %a, %struct.S* nocapture readonly %b, i32 %n) local_unnamed_addr {
entry:
  %cmp7 = icmp sgt i32 %n, 0
  br i1 %cmp7, label %for.body.preheader, label %for.cond.cleanup

for.body.preheader:                               ; preds = %entry
  br label %for.body

for.cond.cleanup.loopexit:                        ; preds = %for.body
  br label %for.cond.cleanup

for.cond.cleanup:                                 ; preds = %for.cond.cleanup.loopexit, %entry
  ret i32 12

for.body:                                         ; preds = %for.body, %for.body.preheader
  %i.08 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
  %idxprom = zext i32 %i.08 to i64
  %arrayidx = getelementptr inbounds %struct.S, %struct.S* %b, i64 %idxprom
  %arrayidx2 = getelementptr inbounds %struct.S, %struct.S* %a, i64 %idxprom
  %0 = bitcast %struct.S* %arrayidx2 to i8*
  %1 = bitcast %struct.S* %arrayidx to i8*
  call void @llvm.memcpy.p0i8.p0i8.i64(i8* nonnull align 4 dereferenceable(12) %0, i8* nonnull align 4 dereferenceable(12) %1, i64 12, i1 false)
  %inc = add nuw nsw i32 %i.08, 1
  %cmp = icmp slt i32 %inc, %n
  br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit
}

; Function Attrs: argmemonly nofree nosync nounwind willreturn
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* noalias nocapture writeonly, i8* noalias nocapture readonly, i64, i1 immarg) #0

attributes #0 = { argmemonly nofree nosync nounwind willreturn }

```
The loop idiom pass currently only handles load and store instructions. Since struct S is too big to fit in a register, the loop body contains a memcpy intrinsic.

With this change, re-run `opt -loop-idiom -S < memcpy_before.ll`. The loop memcpy is promoted to loop preheader. For this trivial case, the loop is dead and will be removed by another pass.
```
%struct.S = type { i32, i32, i8 }

define dso_local i32 @_Z3fooP1SS0_i(%struct.S* noalias nocapture %a, %struct.S* nocapture readonly %b, i32 %n) local_unnamed_addr {
entry:
  %a1 = bitcast %struct.S* %a to i8*
  %b2 = bitcast %struct.S* %b to i8*
  %cmp7 = icmp sgt i32 %n, 0
  br i1 %cmp7, label %for.body.preheader, label %for.cond.cleanup

for.body.preheader:                               ; preds = %entry
  %0 = zext i32 %n to i64
  %1 = mul nuw nsw i64 %0, 12
  call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %a1, i8* align 4 %b2, i64 %1, i1 false)
  br label %for.body

for.cond.cleanup.loopexit:                        ; preds = %for.body
  br label %for.cond.cleanup

for.cond.cleanup:                                 ; preds = %for.cond.cleanup.loopexit, %entry
  ret i32 12

for.body:                                         ; preds = %for.body, %for.body.preheader
  %i.08 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
  %idxprom = zext i32 %i.08 to i64
  %arrayidx = getelementptr inbounds %struct.S, %struct.S* %b, i64 %idxprom
  %arrayidx2 = getelementptr inbounds %struct.S, %struct.S* %a, i64 %idxprom
  %2 = bitcast %struct.S* %arrayidx2 to i8*
  %3 = bitcast %struct.S* %arrayidx to i8*
  %inc = add nuw nsw i32 %i.08, 1
  %cmp = icmp slt i32 %inc, %n
  br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit
}

; Function Attrs: argmemonly nofree nosync nounwind willreturn
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* noalias nocapture writeonly, i8* noalias nocapture readonly, i64, i1 immarg) #0

attributes #0 = { argmemonly nofree nosync nounwind willreturn }
```

Reviewed By: zino

Differential Revision: https://reviews.llvm.org/D97667
2021-05-04 17:05:04 -07:00
Tres Popp efce19c3b0 Revert "[loop-idiom] Hoist loop memcpys to loop preheader"
This reverts commit 75d6b8bb40.

The reasoning is mentioned in https://reviews.llvm.org/D97667
2021-04-28 13:16:34 +02:00
Han Zhu 75d6b8bb40 [loop-idiom] Hoist loop memcpys to loop preheader
For a simple loop like:
```
struct S {
  int x;
  int y;
  char b;
};

unsigned foo(S* __restrict__ a, S* b, int n) {
  for (int i = 0; i < n; i++)
    a[i] = b[i];

  return sizeof(a[0]);
}
```
We could eliminate the loop and convert it to a large memcpy of 12*n bytes. Currently this is not handled. Output of `opt -loop-idiom -S < memcpy_before.ll`
```
%struct.S = type { i32, i32, i8 }

define dso_local i32 @_Z3fooP1SS0_i(%struct.S* noalias nocapture %a, %struct.S* nocapture readonly %b, i32 %n) local_unnamed_addr {
entry:
  %cmp7 = icmp sgt i32 %n, 0
  br i1 %cmp7, label %for.body.preheader, label %for.cond.cleanup

for.body.preheader:                               ; preds = %entry
  br label %for.body

for.cond.cleanup.loopexit:                        ; preds = %for.body
  br label %for.cond.cleanup

for.cond.cleanup:                                 ; preds = %for.cond.cleanup.loopexit, %entry
  ret i32 12

for.body:                                         ; preds = %for.body, %for.body.preheader
  %i.08 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
  %idxprom = zext i32 %i.08 to i64
  %arrayidx = getelementptr inbounds %struct.S, %struct.S* %b, i64 %idxprom
  %arrayidx2 = getelementptr inbounds %struct.S, %struct.S* %a, i64 %idxprom
  %0 = bitcast %struct.S* %arrayidx2 to i8*
  %1 = bitcast %struct.S* %arrayidx to i8*
  call void @llvm.memcpy.p0i8.p0i8.i64(i8* nonnull align 4 dereferenceable(12) %0, i8* nonnull align 4 dereferenceable(12) %1, i64 12, i1 false)
  %inc = add nuw nsw i32 %i.08, 1
  %cmp = icmp slt i32 %inc, %n
  br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit
}

; Function Attrs: argmemonly nofree nosync nounwind willreturn
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* noalias nocapture writeonly, i8* noalias nocapture readonly, i64, i1 immarg) #0

attributes #0 = { argmemonly nofree nosync nounwind willreturn }

```
The loop idiom pass currently only handles load and store instructions. Since struct S is too big to fit in a register, the loop body contains a memcpy intrinsic.

With this change, re-run `opt -loop-idiom -S < memcpy_before.ll`. The loop memcpy is promoted to loop preheader. For this trivial case, the loop is dead and will be removed by another pass.
```
%struct.S = type { i32, i32, i8 }

define dso_local i32 @_Z3fooP1SS0_i(%struct.S* noalias nocapture %a, %struct.S* nocapture readonly %b, i32 %n) local_unnamed_addr {
entry:
  %a1 = bitcast %struct.S* %a to i8*
  %b2 = bitcast %struct.S* %b to i8*
  %cmp7 = icmp sgt i32 %n, 0
  br i1 %cmp7, label %for.body.preheader, label %for.cond.cleanup

for.body.preheader:                               ; preds = %entry
  %0 = zext i32 %n to i64
  %1 = mul nuw nsw i64 %0, 12
  call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %a1, i8* align 4 %b2, i64 %1, i1 false)
  br label %for.body

for.cond.cleanup.loopexit:                        ; preds = %for.body
  br label %for.cond.cleanup

for.cond.cleanup:                                 ; preds = %for.cond.cleanup.loopexit, %entry
  ret i32 12

for.body:                                         ; preds = %for.body, %for.body.preheader
  %i.08 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
  %idxprom = zext i32 %i.08 to i64
  %arrayidx = getelementptr inbounds %struct.S, %struct.S* %b, i64 %idxprom
  %arrayidx2 = getelementptr inbounds %struct.S, %struct.S* %a, i64 %idxprom
  %2 = bitcast %struct.S* %arrayidx2 to i8*
  %3 = bitcast %struct.S* %arrayidx to i8*
  %inc = add nuw nsw i32 %i.08, 1
  %cmp = icmp slt i32 %inc, %n
  br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit
}

; Function Attrs: argmemonly nofree nosync nounwind willreturn
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* noalias nocapture writeonly, i8* noalias nocapture readonly, i64, i1 immarg) #0

attributes #0 = { argmemonly nofree nosync nounwind willreturn }
```

Reviewed By: zino

Differential Revision: https://reviews.llvm.org/D97667
2021-04-27 17:37:51 -07:00
Han Zhu cd13f19031 [loop-idiom][NFC] Extract processLoopStoreOfLoopLoad into a helper function
Differential Revision: https://reviews.llvm.org/D100979
2021-04-27 13:42:30 -07:00
Vitaly Buka f2a585e6d3 [NFC] Fix "not used" warning 2021-04-26 22:09:23 -07:00
Roman Lebedev 005881e96e
[LoopIdiom] left-shift-until-bittest: set all allowed no-wrap flags on add/sub
I've checked each one of these with alive2,
and this is both correct and precise.
2021-04-11 18:08:07 +03:00
Craig Topper 5fc0e98d9a [LoopIdiomRecognize] Minor cleanups to the FFS idiom matching. NFC
-Make sure of the CreateShl/LShr/AShr methods that take a uint64_t
instead of creating a ConstantInt for 1 ourselves.
-Use Builder.getInt1 or ConstantInt::getBool instead of a conditional.
-Pull out repeated calls to getType.
2021-04-07 10:03:14 -07:00
Krasimir Georgiev 8e7df996e3 Revert "[loop-idiom] Hoist loop memcpys to loop preheader"
This reverts commit 92ddd3c1b6.

Causes multistage clang crashes, e.g.:
https://lab.llvm.org/buildbot/#/builders/36/builds/6678
2021-03-30 11:47:12 +02:00
Han Zhu 92ddd3c1b6 [loop-idiom] Hoist loop memcpys to loop preheader
For a simple loop like:
```
struct S {
  int x;
  int y;
  char b;
};

unsigned foo(S* __restrict__ a, S* b, int n) {
  for (int i = 0; i < n; i++)
    a[i] = b[i];

  return sizeof(a[0]);
}
```
We could eliminate the loop and convert it to a large memcpy of 12*n bytes. Currently this is not handled. Output of `opt -loop-idiom -S < memcpy_before.ll`
```
%struct.S = type { i32, i32, i8 }

define dso_local i32 @_Z3fooP1SS0_i(%struct.S* noalias nocapture %a, %struct.S* nocapture readonly %b, i32 %n) local_unnamed_addr {
entry:
  %cmp7 = icmp sgt i32 %n, 0
  br i1 %cmp7, label %for.body.preheader, label %for.cond.cleanup

for.body.preheader:                               ; preds = %entry
  br label %for.body

for.cond.cleanup.loopexit:                        ; preds = %for.body
  br label %for.cond.cleanup

for.cond.cleanup:                                 ; preds = %for.cond.cleanup.loopexit, %entry
  ret i32 12

for.body:                                         ; preds = %for.body, %for.body.preheader
  %i.08 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
  %idxprom = zext i32 %i.08 to i64
  %arrayidx = getelementptr inbounds %struct.S, %struct.S* %b, i64 %idxprom
  %arrayidx2 = getelementptr inbounds %struct.S, %struct.S* %a, i64 %idxprom
  %0 = bitcast %struct.S* %arrayidx2 to i8*
  %1 = bitcast %struct.S* %arrayidx to i8*
  call void @llvm.memcpy.p0i8.p0i8.i64(i8* nonnull align 4 dereferenceable(12) %0, i8* nonnull align 4 dereferenceable(12) %1, i64 12, i1 false)
  %inc = add nuw nsw i32 %i.08, 1
  %cmp = icmp slt i32 %inc, %n
  br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit
}

; Function Attrs: argmemonly nofree nosync nounwind willreturn
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* noalias nocapture writeonly, i8* noalias nocapture readonly, i64, i1 immarg) #0

attributes #0 = { argmemonly nofree nosync nounwind willreturn }

```
The loop idiom pass currently only handles load and store instructions. Since struct S is too big to fit in a register, the loop body contains a memcpy intrinsic.

With this change, re-run `opt -loop-idiom -S < memcpy_before.ll`. The loop memcpy is promoted to loop preheader. For this trivial case, the loop is dead and will be removed by another pass.
```
%struct.S = type { i32, i32, i8 }

define dso_local i32 @_Z3fooP1SS0_i(%struct.S* noalias nocapture %a, %struct.S* nocapture readonly %b, i32 %n) local_unnamed_addr {
entry:
  %a1 = bitcast %struct.S* %a to i8*
  %b2 = bitcast %struct.S* %b to i8*
  %cmp7 = icmp sgt i32 %n, 0
  br i1 %cmp7, label %for.body.preheader, label %for.cond.cleanup

for.body.preheader:                               ; preds = %entry
  %0 = zext i32 %n to i64
  %1 = mul nuw nsw i64 %0, 12
  call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %a1, i8* align 4 %b2, i64 %1, i1 false)
  br label %for.body

for.cond.cleanup.loopexit:                        ; preds = %for.body
  br label %for.cond.cleanup

for.cond.cleanup:                                 ; preds = %for.cond.cleanup.loopexit, %entry
  ret i32 12

for.body:                                         ; preds = %for.body, %for.body.preheader
  %i.08 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
  %idxprom = zext i32 %i.08 to i64
  %arrayidx = getelementptr inbounds %struct.S, %struct.S* %b, i64 %idxprom
  %arrayidx2 = getelementptr inbounds %struct.S, %struct.S* %a, i64 %idxprom
  %2 = bitcast %struct.S* %arrayidx2 to i8*
  %3 = bitcast %struct.S* %arrayidx to i8*
  %inc = add nuw nsw i32 %i.08, 1
  %cmp = icmp slt i32 %inc, %n
  br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit
}

; Function Attrs: argmemonly nofree nosync nounwind willreturn
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* noalias nocapture writeonly, i8* noalias nocapture readonly, i64, i1 immarg) #0

attributes #0 = { argmemonly nofree nosync nounwind willreturn }
```

Reviewed By: zino

Differential Revision: https://reviews.llvm.org/D97667
2021-03-29 23:36:26 -07:00
Han Zhu 2bd4049ceb Revert "[loop-idiom] Hoist loop memcpys to loop preheader"
This reverts commit deb5095833.

Bad commit message.
2021-03-29 23:35:35 -07:00
Han Zhu deb5095833 [loop-idiom] Hoist loop memcpys to loop preheader
Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

Blame Revision:

Differential Revision: https://phabricator.intern.facebook.com/D26380397
2021-03-29 23:14:42 -07:00
Sander de Smalen 79a6cfc29e NFC: Migrate LoopIdiomRecognize to work on InstructionCost
This patch migrates cost values and arithmetic to work on InstructionCost.
When the interfaces to TargetTransformInfo are changed, any InstructionCost
state will propagate naturally.

See this patch for the introduction of the type: https://reviews.llvm.org/D91174
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2020-November/146408.html
2021-02-06 14:39:19 +00:00
Roman Lebedev 51879a5256
[LoopIdiom] 'left-shift until bittest': don't forget to check that PHI node is in loop header
Fixes an issue reported by Peter Collingbourne in
https://reviews.llvm.org/D91726#2475301
2020-12-30 23:58:41 +03:00
Roman Lebedev 25aebe2ccf
[LoopIdiom] 'left-shift-until-bittest': keep no-wrap flags on shift, fix edge-case miscompilation for %x.next
While `%x.curr` is always safe to compute, because `LoopBackedgeTakenCount`
will always be smaller than `bitwidth(X)`, i.e. we never get poison,
rewriting `%x.next` is more complicated, however, because `X << LoopTripCount`
will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`).

So unless we know that isn't the case (as alive2 notes, we know it's safe
to do iff shift had no-wrap flags, or bitpos does not indicate signbit,
or we know that %x is never `1`), we'll need to emit an alternative,
safe IR, by either just shifting the `%x.curr`, or conditionally selecting
between the computed `%x.next` and `0`..
Former IR looks better so let's do that.

While there, ensure that we don't drop no-wrap flags from said shift.
2020-12-24 21:20:52 +03:00
Roman Lebedev 2b61e7c68c
[LoopIdiom] 'left-shift until bittest' idiom: support rewriting loop as countable, allow extra cruft
The current state of the transform is still not enough to support
my motivational pattern, because it has one more "induction variable".

I have delayed posting this patch, because originally even just rewriting
the loop as countable wasn't enough to nicely transform my motivational pattern,
because i expected that extra IV to be rewritten afterwards,
but it wasn't happening until i fixed that in D91800.

So, this patch allows the  'left-shift until bittest' loop idiom
as long as the inserted ops are cheap,
and lifts any and all extra use checks on the instructions.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D92754
2020-12-23 22:28:10 +03:00
Roman Lebedev a0ddc61c5b
[LoopIdiom] 'left-shift until bittest' idiom: support canonical sign bit mask
If the bitmask is for sign bit, instcombine would have canonicalized
the pattern into a proper sign bit check. Supporting that is still
simple, but requires a bit of a roundtrip - we first have to use
`decomposeBitTestICmp()`, and the rest again just works.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D91726
2020-12-23 22:28:09 +03:00
Roman Lebedev cb2e5980ba
[LoopIdiom] 'left-shift until bittest' idiom: support constant bit mask
The handing of the case where the mask is a constant is trivial,
if said constant is a power of two, the bit in question is log2(mask),
rest just works.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D91725
2020-12-23 22:28:09 +03:00
Roman Lebedev e124844709
[LoopIdiom] Introduce 'left-shift until bittest' idiom
The motivation here is the following inner loop in fp16/fp24 -> fp32 expander,
that runs as part of the floating-point DNG decompression in RawSpeed library:
cd380bb9a2/src/librawspeed/decompressors/DeflateDecompressor.cpp (L112-L115)
```
      while (!(fp32_fraction & (1 << 23))) {
        fp32_exponent -= 1;
        fp32_fraction <<= 1;
      }
```
(https://godbolt.org/z/r13YMh)
As one might notice, that loop is currently uncountable, and that whole code stays scalar.
Yet, it is rather trivial to make that loop countable:
 https://godbolt.org/z/do8WMz
and we can prove that via alive2:
 https://alive2.llvm.org/ce/z/7vQnji (ha nice, isn't it?)
... and that allow for the whole fp16->fp32 code to vectorize:
 https://godbolt.org/z/7hYr13

Now, while i'd love to get there, i feel like i should take it in steps.

For now, this introduces support for the most basic case,
where the bit position is known as a variable,
and the loop *will* go away (has no live-outs other than the recurrence,
no extra instructions in the loop).

I have added sufficient (i believe) test coverage,
and alive2 is happy with those transforms.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D91038
2020-12-23 22:28:09 +03:00
Craig Topper 25067f179f [LoopIdiomRecognize] Teach detectShiftUntilZeroIdiom to recognize loops where the counter is decrementing.
This adds support for loops like

unsigned clz(unsigned x) {
    unsigned w = sizeof (x) * CHAR_BIT;
    while (x) {
        w--;
        x >>= 1;
    }

    return w;
}

and

unsigned clz(unsigned x) {
    unsigned w = sizeof (x) * CHAR_BIT - 1;
    while (x >>= 1) {
        w--;
    }

    return w;
}

To support these we look for add x, -1 as well as add x, 1 that
we already matched. If the value was -1 we need to subtract from
the initial counter value instead of adding to it.

Fixes PR48404.

Differential Revision: https://reviews.llvm.org/D92745
2020-12-14 14:25:05 -08:00
Craig Topper 305fcc9122 [LoopIdiomRecognize] Merge a conditional operator with an earlier if and remove an extra temporary variable. NFC
The CountPrev variable was only used to forward a value from
the if statement to the conditional operator under the same
condition.

While there move some variable declarations to their first
assignment.
2020-12-06 15:23:18 -08:00
Nikita Popov 4df8efce80 [AA] Split up LocationSize::unknown()
Currently, we have some confusion in the codebase regarding the
meaning of LocationSize::unknown(): Some parts (including most of
BasicAA) assume that LocationSize::unknown() only allows accesses
after the base pointer. Some parts (various callers of AA) assume
that LocationSize::unknown() allows accesses both before and after
the base pointer (but within the underlying object).

This patch splits up LocationSize::unknown() into
LocationSize::afterPointer() and LocationSize::beforeOrAfterPointer()
to make this completely unambiguous. I tried my best to determine
which one is appropriate for all the existing uses.

The test changes in cs-cs.ll in particular illustrate a previously
clearly incorrect AA result: We were effectively assuming that
argmemonly functions were only allowed to access their arguments
after the passed pointer, but not before it. I'm pretty sure that
this was not intentional, and it's certainly not specified by
LangRef that way.

Differential Revision: https://reviews.llvm.org/D91649
2020-11-26 18:39:55 +01:00
Caroline Concatto 2415636475 [SVE]Clarify TypeSize comparisons in llvm/lib/Transforms
Use isKnownXY comparators when one of the operands can be with
scalable vectors or getFixedSize() for all the other cases.

This patch also does bug fixes for getPrimitiveSizeInBits by using
getFixedSize() near the places with the TypeSize comparison.

Differential Revision: https://reviews.llvm.org/D89703
2020-10-23 09:15:17 +01:00
Philip Reames de3cb9548d Fix a bug in memset formation with vectors of non-integral pointers
We were converting the non-integral store into a integer store which is not legal.
2020-10-01 16:11:11 -07:00
Stefanos Baziotis 89c1e35f3c [LoopInfo] empty() -> isInnermost(), add isOutermost()
Differential Revision: https://reviews.llvm.org/D82895
2020-09-22 23:28:51 +03:00
David Sherwood 816663adb5 [SVE] In LoopIdiomRecognize::isLegalStore bail out for scalable vectors
The function LoopIdiomRecognize::isLegalStore looks for stores in loops
that could be transformed into memset or memcpy. However, the algorithm
currently requires that we know how big the store is at runtime, i.e.
that the store size will not overflow an unsigned integer. For scalable
vectors we cannot guarantee this so I have changed the code to bail out
for now. In addition, even if we add a way to query the maximum value of
vscale in future we will still need to update the algorithm to cope with
non-constant strides. The additional cost associated with calculating
the memset and memcpy arguments will need to be taken into account as
well.

This patch also fixes up an implicit TypeSize -> uint64_t cast,
thereby removing a warning. I've added tests here showing a fixed
width vector loop being transformed into memcpy, and a scalable
vector loop remaining unchanged:

  Transforms/LoopIdiom/memcpy-vectors.ll

Differential Revision: https://reviews.llvm.org/D87439
2020-09-14 11:28:31 +01:00
Anh Tuyen Tran 68717acb24 [LoopIdiomRecognizePass] Options to disable part or the entire Loop Idiom Recognize Pass
Loop Idiom Recognize Pass (LIRP) attempts to transform loops with subscripted arrays
into memcpy/memset function calls. In some particular situation, this transformation
introduces negative impacts. For example: https://bugs.llvm.org/show_bug.cgi?id=47300

This patch will enable users to disable a particular part of the transformation, while
he/she can still enjoy the benefit brought about by the rest of LIRP. The default
behavior stays unchanged: no part of LIRP is disabled by default.

Reviewed By: etiotto (Ettore Tiotto)

Differential Revision: https://reviews.llvm.org/D86262
2020-09-01 13:59:24 +00:00
Florian Hahn 8eded24bf4 Recommit "[SCEVExpander] Add helper to clean up instrs inserted while expanding."
Recommit the patch after fixing an issue reported caused by the fact
that re-used values are also added to InsertedValues.

Additional tests have been added in 88818491b9

This reverts the revert commit 38884641f2.
2020-08-21 15:04:17 +01:00
Jordan Rupprecht 38884641f2 Temporarily revert "[SCEVExpander] Add helper to clean up instrs inserted while expanding."
This reverts commit 7829c33084. The assertion is triggering on some internal code. A reduced test case is in progress.
2020-08-14 14:52:37 -07:00
Florian Hahn 7829c33084 [SCEVExpander] Add helper to clean up instrs inserted while expanding.
SCEVExpander already tracks which instructions have been inserted n
InsertedValues/InsertedPostIncValues. This patch adds an additional
vector to collect the instructions in insertion order. This can then be
used to remove exactly the instructions inserted by the expander.

This replaces ExpandedValuesCleaner, which in some cases might remove
values not inserted by the expander (e.g. if a value was dead before
insertion and is then used during expansion).

Reviewed By: lebedev.ri

Differential Revision: https://reviews.llvm.org/D84327
2020-08-11 09:30:31 +01:00
Vitaly Buka b0eb40ca39 [NFC] Remove unused GetUnderlyingObject paramenter
Depends on D84617.

Differential Revision: https://reviews.llvm.org/D84621
2020-07-31 02:10:03 -07:00
Vitaly Buka 89051ebace [NFC] GetUnderlyingObject -> getUnderlyingObject
I am going to touch them in the next patch anyway
2020-07-30 21:08:24 -07:00
Jon Roelofs dc09c65f63 LoopIdiomRecognize: use ExpandedValuesCleaner in another place
This is a necessary cleanup after having expanded a SCEV.

See: https://reviews.llvm.org/D84071#inline-774728

Differential Revision: https://reviews.llvm.org/D84174
2020-07-21 09:32:23 -06:00
Jon Roelofs 4d75cc4b0a More conservatively report status from LoopIdiomRecognize
Being "precise" here is getting us into trouble with one of the
EXPENSIVE_CHECKS buildbots, see [1].  Rather than reporting IR additions that
later get rolled back as "no change", instead we now conservatively report that
there was.

1: http://lists.llvm.org/pipermail/llvm-dev/2020-July/143509.html

Differential Revision: https://reviews.llvm.org/D84071
2020-07-21 09:32:22 -06:00
Benjamin Kramer 9a0689e072 Make helpers static. NFC. 2020-07-17 13:49:11 +02:00
dfukalov 7ddee0922f [NFCI][CostModel] Add const to Value*.
Summary:
Get back `const` partially lost in one of recent changes.
Additionally specify explicit qualifiers in few places.

Reviewers: samparker

Reviewed By: samparker

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D82383
2020-06-24 23:16:08 +03:00
serge-sans-paille 1cafd8a5d1 Fix LoopIdiomRecognize pass return status
Introduce an helper class to aggregate the cleanup in case of rollback.

Differential Revision: https://reviews.llvm.org/D81230
2020-06-17 11:12:03 +02:00
Nikita Popov bff94a8e2b [LoopIdiomRecognize] Remove unnecessary MaybeAlign use (NFC)
Loads and stores always have an alignment now.
2020-06-05 23:11:57 +02:00