AMDGPU normally spills SGPRs to VGPRs. Previously, since all register
classes are handled at the same time, this was problematic. We don't
know ahead of time how many registers will be needed to be reserved to
handle the spilling. If no VGPRs were left for spilling, we would have
to try to spill to memory. If the spilled SGPRs were required for exec
mask manipulation, it is highly problematic because the lanes active
at the point of spill are not necessarily the same as at the restore
point.
Avoid this problem by fully allocating SGPRs in a separate regalloc
run from VGPRs. This way we know the exact number of VGPRs needed, and
can reserve them for a second run. This fixes the most serious
issues, but it is still possible using inline asm to make all VGPRs
unavailable. Start erroring in the case where we ever would require
memory for an SGPR spill.
This is implemented by giving each regalloc pass a callback which
reports if a register class should be handled or not. A few passes
need some small changes to deal with leftover virtual registers.
In the AMDGPU implementation, a new pass is introduced to take the
place of PrologEpilogInserter for SGPR spills emitted during the first
run.
One disadvantage of this is currently StackSlotColoring is no longer
used for SGPR spills. It would need to be run again, which will
require more work.
Error if the standard -regalloc option is used. Introduce new separate
-sgpr-regalloc and -vgpr-regalloc flags, so the two runs can be
controlled individually. PBQB is not currently supported, so this also
prevents using the unhandled allocator.
This will currently accept the old number of bytes syntax, and convert
it to a scalar. This should be removed in the near future (I think I
converted all of the tests already, but likely missed a few).
Not sure what the exact syntax and policy should be. We can continue
printing the number of bytes for non-generic instructions to avoid
test churn and only allow non-scalar types for generic instructions.
This will currently print the LLT in parentheses, but accept parsing
the existing integers and implicitly converting to scalar. The
parentheses are a bit ugly, but the parser logic seems unable to deal
without either parentheses or some keyword to indicate the start of a
type.
Replace individual operands GLC, SLC, and DLC with a single cache_policy
bitmask operand. This will reduce the number of operands in MIR and I hope
the amount of code. These operands are mostly 0 anyway.
Additional advantage that parser will accept these flags in any order unlike
now.
Differential Revision: https://reviews.llvm.org/D96469
gfx90a operations require even aligned registers, but this was
previously achieved by reserving registers inside the full class.
Ideally this would be captured in the static instruction definitions
for the operands, and we would have different instructions per
subtarget. The hackiest part of this is we need to manually reassign
AGPR register classes after instruction selection (we get away without
this for VGPRs since those types are actually registered for legal
types).