Commit Graph

7 Commits

Author SHA1 Message Date
Nemanja Ivanovic 03e7fefff8 [PowerPC] Canonicalize shuffles on big endian targets as well
Extend shuffle canonicalization and conversion of shuffles fed by vectorized
scalars to big endian subtargets. For big endian subtargets, loads and direct
moves of scalars into vector registers put the data in the correct element for
SCALAR_TO_VECTOR if the data type is 8 bytes wide. However, if the data type is
narrower, the value still ends up in the wrong place - althouth a different
wrong place than on little endian targets.

This patch extends the combine that keeps values where they are if they feed a
shuffle to big endian targets.

Differential revision: https://reviews.llvm.org/D100478
2021-04-20 07:29:47 -05:00
Nemanja Ivanovic 1fed131660 [PowerPC] Canonicalize shuffles to match more single-instruction masks on LE
We currently miss a number of opportunities to emit single-instruction
VMRG[LH][BHW] instructions for shuffles on little endian subtargets. Although
this in itself is not a huge performance opportunity since loading the permute
vector for a VPERM can always be pulled out of loops, producing such merge
instructions is useful to downstream optimizations.
Since VPERM is essentially opaque to all subsequent optimizations, we want to
avoid it as much as possible. Other permute instructions have semantics that can
be reasoned about much more easily in later optimizations.

This patch does the following:
- Canonicalize shuffles so that the first element comes from the first vector
  (since that's what most of the mask matching functions want)
- Switch the elements that come from splat vectors so that they match the
  corresponding elements from the other vector (to allow for merges)
- Adds debugging messages for when a shuffle is matched to a VPERM so that
  anyone interested in improving this further can get the info for their code

Differential revision: https://reviews.llvm.org/D77448
2020-06-18 21:54:22 -05:00
Nemanja Ivanovic ecd8435483 [NFC][PowerPC] Fix register class for patterns using XXPERMDIs
There are a few patterns where we use a superclass for inputs to this
instruction rather than the correct class. This can sometimes lead to
unncessary copies.
2020-04-07 14:06:08 -05:00
Zaara Syeda b2595b988b [PowerPC] Improve codegen for vector loads using scalar_to_vector
This patch aims to improve the codegen for vector loads involving the
scalar_to_vector (load X) sequence. Initially, ld->mv instructions were used
for scalar_to_vector (load X), so this patch allows scalar_to_vector (load X)
to utilize:

LXSD and LXSDX for i64 and f64
LXSIWAX for i32 (sign extension to i64)
LXSIWZX for i32 and f64

Committing on behalf of Amy Kwan.
Differential Revision: https://reviews.llvm.org/D48950

llvm-svn: 339260
2018-08-08 15:20:43 +00:00
Nemanja Ivanovic 11049f8f07 [Power9] Part-word VSX integer scalar loads/stores and sign extend instructions
This patch corresponds to review:
https://reviews.llvm.org/D23155

This patch removes the VSHRC register class (based on D20310) and adds
exploitation of the Power9 sub-word integer loads into VSX registers as well
as vector sign extensions.
The new instructions are useful for a few purposes:

    Int to Fp conversions of 1 or 2-byte values loaded from memory
    Building vectors of 1 or 2-byte integers with values loaded from memory
    Storing individual 1 or 2-byte elements from integer vectors

This patch implements all of those uses.

llvm-svn: 283190
2016-10-04 06:59:23 +00:00
Ehsan Amiri a538b0f023 Adding -verify-machineinstrs option to PowerPC tests
Currently we have a number of tests that fail with -verify-machineinstrs.
To detect this cases earlier we add the option to the testcases with the
exception of tests that will currently fail with this option. PR 27456 keeps
track of this failures.

No code review, as discussed with Hal Finkel.

llvm-svn: 277624
2016-08-03 18:17:35 +00:00
Nemanja Ivanovic 44513e545f [PowerPC] - Legalize vector types by widening instead of integer promotion
This patch corresponds to review:
http://reviews.llvm.org/D20443

It changes the legalization strategy for illegal vector types from integer
promotion to widening. This only applies for vectors with elements of width
that is a multiple of a byte since we have hardware support for vectors with
1, 2, 3, 8 and 16 byte elements.
Integer promotion for vectors is quite expensive on PPC due to the sequence
of breaking apart the vector, extending the elements and reconstituting the
vector. Two of these operations are expensive.
This patch causes between minor and major improvements in performance on most
benchmarks. There are very few benchmarks whose performance regresses. These
regressions can be handled in a subsequent patch with a DAG combine (similar
to how this patch handles int -> fp conversions of illegal vector types).

llvm-svn: 274535
2016-07-05 09:22:29 +00:00