Commit Graph

237 Commits

Author SHA1 Message Date
Petr Hosek 2d4470ab89 Revert "Allow rematerialization of virtual reg uses"
This reverts commit 877572cc19 which
introduced PR51516.
2021-08-18 00:12:41 -07:00
David Green 52e0cf9d61 [ARM] Enable subreg liveness
This enables subreg liveness in the arm backend when MVE is present,
which allows the register allocator to detect when subregister are
alive/dead, compared to only acting on full registers. This can helps
produce better code on MVE with the way MQPR registers are made up of
SPR registers, but is especially helpful for MQQPR and MQQQQPR
registers, where there are very few "registers" available and being able
to split them up into subregs can help produce much better code.

Differential Revision: https://reviews.llvm.org/D107642
2021-08-17 14:10:33 +01:00
Stanislav Mekhanoshin 877572cc19 Allow rematerialization of virtual reg uses
Currently isReallyTriviallyReMaterializableGeneric() implementation
prevents rematerialization on any virtual register use on the grounds
that is not a trivial rematerialization and that we do not want to
extend liveranges.

It appears that LRE logic does not attempt to extend a liverange of
a source register for rematerialization so that is not an issue.
That is checked in the LiveRangeEdit::allUsesAvailableAt().

The only non-trivial aspect of it is accounting for tied-defs which
normally represent a read-modify-write operation and not rematerializable.

The test for a tied-def situation already exists in the
/CodeGen/AMDGPU/remat-vop.mir,
test_no_remat_v_cvt_f32_i32_sdwa_dst_unused_preserve.

The change has affected ARM/Thumb, Mips, RISCV, and x86. For the targets
where I more or less understand the asm it seems to reduce spilling
(as expected) or be neutral. However, it needs a review by all targets'
specialists.

Differential Revision: https://reviews.llvm.org/D106408
2021-08-16 12:42:42 -07:00
David Green eeddcba525 [RDA] Attempt to make RDA subreg aware
This attempts to make more of RDA aware of potentially overlapping
subregisters. Some of this was already in place, with it iterating
through MCRegUnitIterators. This also replaces calls to
LiveRegs.contains(..) with !LiveRegs.available(..), and updates the
isValidRegUseOf and isValidRegDefOf to search subregs.

Differential Revision: https://reviews.llvm.org/D107351
2021-08-04 14:21:32 +01:00
David Green ff9958b70e [ARM] Test showing incorrect codegen when subreg liveness is enabled. NFC 2021-08-04 14:21:32 +01:00
Sam Tebbs ff0ef6a518 [ARM][LowOverheadLoops] Make some stack spills valid for tail predication
This patch makes vector spills valid for tail predication when all loads
from the same stack slot are within the loop

Differential Revision: https://reviews.llvm.org/D105443
2021-07-15 19:23:52 +01:00
Matt Arsenault fae05692a3 CodeGen: Print/parse LLTs in MachineMemOperands
This will currently accept the old number of bytes syntax, and convert
it to a scalar. This should be removed in the near future (I think I
converted all of the tests already, but likely missed a few).

Not sure what the exact syntax and policy should be. We can continue
printing the number of bytes for non-generic instructions to avoid
test churn and only allow non-scalar types for generic instructions.

This will currently print the LLT in parentheses, but accept parsing
the existing integers and implicitly converting to scalar. The
parentheses are a bit ugly, but the parser logic seems unable to deal
without either parentheses or some keyword to indicate the start of a
type.
2021-06-30 16:54:13 -04:00
David Green bee2f618d5 [ARM] Introduce t2WhileLoopStartTP
This adds t2WhileLoopStartTP, similar to the t2DoLoopStartTP added in
D90591. It keeps a reference to both the tripcount register and the
element count register, so that the ARMLowOverheadLoops pass in the
backend can pick the correct one without having to search for it from
the operand of a VCTP.

Differential Revision: https://reviews.llvm.org/D103236
2021-06-13 13:55:34 +01:00
David Green e0c605f638 [ARM] Ensure instructions are simplified prior to GatherScatter lowering.
Surprisingly, not all instructions are always simplified after unrolling
and before MVE gather/scatter lowering. Notably dead gather operations
can be left around which cause the gather/scatter lowering pass to crash
if there are multiple gathers, some of which are dead.

This patch ensures they are simplified before we modify anything, which
can change some of the existing tests, including making them no-longer
test what they originally tested. This uses a combination of disabling
the gather/scatter lowering pass and adjusting the test to keep them as
before.

Differential Revision: https://reviews.llvm.org/D103150
2021-06-10 20:18:12 +01:00
David Green d7853bae94 [ARM] Generate VDUP(Const) from constant buildvectors
If we cannot otherwise use a VMOVimm/VMOVFPimm/VMVNimm, fall back to
producing a VDUP(const) as opposed to a constant pool load. This will at
least be smaller codesize and can allow the VDUP to be folded into other
instructions.

Differential Revision: https://reviews.llvm.org/D103808
2021-06-08 20:51:33 +01:00
David Green 65831422a9 [ARM] Guard against WhileLoopStart kill flags
If the operand of the WhileLoopStart is flagged as killed, that
currently gets propogated to both the t2CMPri as the instruction is
reverted, and the newly created t2DoLoopStart. Only the second should
remain as killing the operand, the first dropping the flags.
2021-05-29 21:04:26 +01:00
serge-sans-paille 4ab3041acb Revert "[NFC] remove explicit default value for strboolattr attribute in tests"
This reverts commit bda6e5bee0.

See https://lab.llvm.org/buildbot/#/builders/109/builds/15424 for instance
2021-05-24 19:43:40 +02:00
serge-sans-paille bda6e5bee0 [NFC] remove explicit default value for strboolattr attribute in tests
Since d6de1e1a71, no attributes is quivalent to
setting attribute to false.

This is a preliminary commit for https://reviews.llvm.org/D99080
2021-05-24 19:31:04 +02:00
David Green 211ce51f27 [ARM] Clean up some tests, removing dead instructions. NFC 2021-05-22 13:38:00 +01:00
David Green e7a6df68a6 [ARM] Fix the operand used for WLS in ARMLowOverheadLoops
The Loop start instruction handled by the ARMLowOverheadLoops are:
$lr = t2DoLoopStart $r0
$lr = t2DoLoopStartTP $r1, $r0
$lr = t2WhileLoopStartLR $r0, %bb, implicit-def dead $cpsr
All three of these will have LR as the 0 argument, the trip count as the
1 argument.

This patch updated a few places in ARMLowOverheadLoops where the 0th arg
was being used for t2WhileLoopStartLR instructions as the trip count.
One place was entirely removed as it does not seem valid any more, the
case the code is trying to protect against should not be able to occur
with our correct-by-construction low overhead loops.

Differential Revision: https://reviews.llvm.org/D102620
2021-05-21 09:29:30 +01:00
David Green ce76093c3c [ARM] Expand predecessor search to multiple blocks when reverting WhileLoopStarts
We were previously only searching a single preheader for call
instructions when reverting WhileLoopStarts to DoLoopStarts. This
extends that to multiple blocks that can come up when, for example a
loop is expanded from a memcpy. It also expends the instructions from
just Call's to also include other LoopStarts, to catch other low
overhead loops in the preheader.

Differential Revision: https://reviews.llvm.org/D102269
2021-05-14 15:08:14 +01:00
David Green 1011d4ed60 [ARM] Constrain CMPZ shift combine to a single use
We currently prefer t2CMPrs over t2CMPri when the node contains a shift.
This can introduce more nodes if the shift has multiple uses though, as
value from the shift will be needed anyway, and in the case of a t2CMPri
compared with zero will more readily be removed entirely.

Differential Revision: https://reviews.llvm.org/D101688
2021-05-13 18:31:01 +01:00
Malhar Jajoo dfe3ffaa4a [ARM] Transforming memset to Tail predicated Loop
This patch converts llvm.memset intrinsic into Tail Predicated
Hardware loops for a target that supports the Arm M-profile
Vector Extension (MVE).

The llvm.memset is converted to a TP loop for both
constant and non-constant input sizes (of llvm.memset).

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D100435
2021-05-07 13:35:53 +01:00
Malhar Jajoo 9ff38e2d9d [ARM] Transforming memcpy to Tail predicated Loop
This patch converts llvm.memcpy intrinsic into Tail Predicated
Hardware loops for a target that supports the Arm M-profile
Vector Extension (MVE).

From an implementation point of view, the patch

- adds an ARM specific SDAG Node (to which the llvm.memcpy intrinsic is lowered to, during first phase of ISel)
- adds a corresponding TableGen entry to generate a pseudo instruction, with a custom inserter,
  on matching the above node.
- Adds a custom inserter function that expands the pseudo instruction into MIR suitable
   to be (by later passes) into a WLSTP loop.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D99723
2021-05-06 23:21:28 +01:00
Malhar Jajoo fc690777fc Revert "[ARM] Transforming memcpy to Tail predicated Loop"
Reverting commit since it causes failure (10462).
This reverts commit b856f4a232.
2021-05-06 12:39:08 +01:00
Malhar Jajoo b856f4a232 [ARM] Transforming memcpy to Tail predicated Loop
This patch converts llvm.memcpy intrinsic into Tail Predicated
Hardware loops for a target that supports the Arm M-profile
Vector Extension (MVE).

From an implementation point of view, the patch

- adds an ARM specific SDAG Node (to which the llvm.memcpy intrinsic is lowered to, during first phase of ISel)
- adds a corresponding TableGen entry to generate a pseudo instruction, with a custom inserter,
  on matching the above node.
- Adds a custom inserter function that expands the pseudo instruction into MIR suitable
   to be (by later passes) into a WLSTP loop.

Note: A cli option is used to control the conversion of memcpy to TP
loop and this option is currently disabled by default. It may be enabled
in the future after further downstream testing.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D99723
2021-05-06 09:34:09 +01:00
Teresa Johnson ea817d79be [SimplifyCFG] Look for control flow changes instead of side effects.
When passingValueIsAlwaysUndefined scans for an instruction between an
inst with a null or undef argument and its first use, it was checking
for instructions that may have side effects, which is a superset of the
instructions it intended to find (as per the comments, control flow
changing instructions that would prevent reaching the uses). Switch
to using isGuaranteedToTransferExecutionToSuccessor() instead.

Without this change, when enabling -fwhole-program-vtables, which causes
assumes to be inserted by clang, we can get different simplification
decisions. In particular, when building with instrumentation FDO it can
affect the optimizations decisions before FDO matching, leading to some
mismatches.

I had to modify d83507-knowledge-retention-bug.ll since this fix enables
more aggressive optimization of that code such that it no longer tested
the original bug it was meant to test. I removed the undef which still
provokes the original failure (confirmed by temporarily reverting the
fix) and also changed it to just invoke the passes of interest to narrow
the testing.

Similarly I needed to adjust code for UnreachableEliminate.ll to avoid
an undef which was causing the function body to get optimized away with
this fix.

Differential Revision: https://reviews.llvm.org/D101507
2021-05-03 13:32:22 -07:00
David Green 48cef1fa8e [ARM] Create VMOVRRD from adjacent vector extracts
This adds a combine for extract(x, n); extract(x, n+1)  ->
VMOVRRD(extract x, n/2). This allows two vector lanes to be moved at the
same time in a single instruction, and thanks to the other VMOVRRD folds
we have added recently can help reduce the amount of executed
instructions. Floating point types are very similar, but will include a
bitcast to an integer type.

This also adds a shouldRewriteCopySrc, to prevent copy propagation from
DPR to SPR, which can break as not all DPR regs can be extracted from
directly.  Otherwise the machine verifier is unhappy.

Differential Revision: https://reviews.llvm.org/D100244
2021-04-20 15:15:43 +01:00
David Green d97189600e [ARM] Revert WhileLoopStartLR to DoLoopStart
If a WhileLoopStartLR is reverted due to calls in the preheader, we may
still be able to instead create a DoLoopStart, preserving the low
overhead loop. This adds code for that, only reverting the
WhileLoopStartR to a Br/Cmp, leaving the rest of the low overhead loop
in place.

Differential Revision: https://reviews.llvm.org/D98413
2021-03-25 16:44:15 +00:00
Victor Campos f22b4c7122 [ARM] Handle debug instrs in ARM Low Overhead Loop pass
In function ConvertVPTBlocks(), it is assumed that every instruction
within a vector-predicated block is predicated. This is false for debug
instructions, used by LLVM.

Because of this, an assertion failure is reached when an input contains
debug instructions inside VPT blocks. In non-assert builds, an out of
bounds memory access took place.

The present patch properly covers the case of debug instructions.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D99075
2021-03-23 11:49:06 +00:00
David Green bd516d24c1 [ARM] Move t2DoLoopStart reg alloc hint
This adjusts the place that the t2DoLoopStart reg allocation hint is
inserted, adding it in the ARMTPAndVPTOptimizaionPass in a similar place
as other tail predicated loop optimizations. This removes the need for
doing so in a custom inserter, and should make the hint more accurate,
only adding it where we expect to create a DLS (not DLSTP or WLS).
2021-03-11 17:56:19 +00:00
David Green fad70c3068 [ARM] Improve WLS lowering
Recently we improved the lowering of low overhead loops and tail
predicated loops, but concentrated first on the DLS do style loops. This
extends those improvements over to the WLS while loops, improving the
chance of lowering them successfully. To do this the lowering has to
change a little as the instructions are terminators that produce a value
- something that needs to be treated carefully.

Lowering starts at the Hardware Loop pass, inserting a new
llvm.test.start.loop.iterations that produces both an i1 to control the
loop entry and an i32 similar to the llvm.start.loop.iterations
intrinsic added for do loops. This feeds into the loop phi, properly
gluing the values together:

  %wls = call { i32, i1 } @llvm.test.start.loop.iterations.i32(i32 %div)
  %wls0 = extractvalue { i32, i1 } %wls, 0
  %wls1 = extractvalue { i32, i1 } %wls, 1
  br i1 %wls1, label %loop.ph, label %loop.exit
...
loop:
  %lsr.iv = phi i32 [ %wls0, %loop.ph ], [ %iv.next, %loop ]
  ..
  %iv.next = call i32 @llvm.loop.decrement.reg.i32(i32 %lsr.iv, i32 1)
  %cmp = icmp ne i32 %iv.next, 0
  br i1 %cmp, label %loop, label %loop.exit

The llvm.test.start.loop.iterations need to be lowered through ISel
lowering as a pair of WLS and WLSSETUP nodes, which each get converted
to t2WhileLoopSetup and t2WhileLoopStart Pseudos. This helps prevent
t2WhileLoopStart from being a terminator that produces a value,
something difficult to control at that stage in the pipeline. Instead
the t2WhileLoopSetup produces the value of LR (essentially acting as a
lr = subs rn, 0), t2WhileLoopStart consumes that lr value (the Bcc).

These are then converted into a single t2WhileLoopStartLR at the same
point as t2DoLoopStartTP and t2LoopEndDec. Otherwise we revert the loop
to prevent them from progressing further in the pipeline. The
t2WhileLoopStartLR is a single instruction that takes a GPR and produces
LR, similar to the WLS instruction.

  %1:gprlr = t2WhileLoopStartLR %0:rgpr, %bb.3
  t2B %bb.1
...
bb.2.loop:
  %2:gprlr = PHI %1:gprlr, %bb.1, %3:gprlr, %bb.2
  ...
  %3:gprlr = t2LoopEndDec %2:gprlr, %bb.2
  t2B %bb.3

The t2WhileLoopStartLR can then be treated similar to the other low
overhead loop pseudos, eventually being lowered to a WLS providing the
branches are within range.

Differential Revision: https://reviews.llvm.org/D97729
2021-03-11 17:56:19 +00:00
Roman Lebedev b46c085d2b
[NFCI] SCEVExpander: emit intrinsics for integral {u,s}{min,max} SCEV expressions
These intrinsics, not the icmp+select are the canonical form nowadays,
so we might as well directly emit them.

This should not cause any regressions, but if it does,
then then they would needed to be fixed regardless.

Note that this doesn't deal with `SCEVExpander::isHighCostExpansion()`,
but that is a pessimization, not a correctness issue.

Additionally, the non-intrinsic form has issues with undef,
see https://reviews.llvm.org/D88287#2587863
2021-03-06 21:52:46 +03:00
David Green a968e7b82e [ARM] KnownBits for CSINC/CSNEG/CSINV
This adds some simple known bits handling for the three CSINC/NEG/INV
instructions. From the operands known bits we can compute the common
bits of the first operand and incremented/negated/inverted second
operand. The first, especially CSINC ZR, ZR, comes up fair amount in the
tests. The others are more rare so a unit test for them is added.

Differential Revision: https://reviews.llvm.org/D97788
2021-03-04 08:40:20 +00:00
David Green ab280cbaa3 [ARM] Ensure undef is propagated to CBZ/CBNZ flags
In some rare circumstances we can be using an undef register for a
compare. When folded into a CBZ/CBNZ the undef flags are lost, leading
to machine verifier problems. This propagates the existing flags to the
new instruction.
2021-03-03 08:02:58 +00:00
David Green 54e2876132 [ARM] Update and add extra WLS testing. NFC 2021-03-01 21:46:09 +00:00
David Green 21a4faab60 [ARM] Move double vector insert patterns using vins to DAG combine
This removes the existing patterns for inserting two lanes into an
f16/i16 vector register using VINS, instead using a DAG combine to
pattern match the same code sequences. The tablegen patterns were
already on the large side (foreach LANE = [0, 2, 4, 6]) and were not
handling all the cases they could. Moving that to a DAG combine, whilst
not less code, allows us to better control and expand the selection of
VINSs. Additionally this allows us to remove the AddedComplexity on
VCVTT.

The extra trick that this has learned in the process is to move two
adjacent lanes using a single f32 vmov, allowing some extra
inefficiencies to be removed.

Differenial Revision: https://reviews.llvm.org/D96876
2021-02-22 09:29:47 +00:00
David Green 1e007cf43c [ARM] Use rGPR for writeback vldrs
From what I can tell, a writeback is unpredictable with LR for both
loads and stores. This changes the operand from a gprnopc to a rGPR in
both cases (which I believe is essentially a NFC due to the tied-def
already being a rGPR.)

Differential Revision: https://reviews.llvm.org/D96723
2021-02-16 16:44:47 +00:00
David Green a838a4f69f [ARM] Extend search for increment in load/store optimizer
Currently the findIncDecAfter will only look at the next instruction for
post-inc candidates in the load/store optimizer. This extends that to a
search through the current BB, until an instruction that modifies or
uses the increment reg is found. This allows more post-inc load/stores
and ldm/stm's to be created, especially in cases where a schedule might
move instructions further apart.

We make sure not to look any further for an SP, as that might invalidate
stack slots that are still in use.

Differential Revision: https://reviews.llvm.org/D95881
2021-02-15 13:17:21 +00:00
David Green 7786ac8377 [ARM] Remove dead mov's in preheader of tail predicated loops
With t2DoLoopDec we can be left with some extra MOV's in the preheaders
of tail predicated loops. This removes them, in the same way we remove
other dead variables.

Differential Revision: https://reviews.llvm.org/D91857
2021-02-11 10:48:20 +00:00
David Green c722575633 [ARM] Select VINS from vector inserts
This patch adds tablegen patterns for pairs of i16/f16 insert/extracts.
If we are inserting into two adjacent vector lanes (0 and 1 for
example), we can use either a vmov;vins or vmovx;vins to insert the pair
together, avoiding a round-trip from GRP registers. This is quite a
large patterns with a number of EXTRACT_SUBREG/INSERT_SUBREG/
COPY_TO_REGCLASS nodes, but hopefully as most of those become copies all
that will be cleaned up by further optimizations.

The VINS pattern was also adjusted to allow it to represent that it is
inserting into the top half of an existing register.

Differential Revision: https://reviews.llvm.org/D95381
2021-02-02 13:50:02 +00:00
David Green 48230355e9 [ARM] Remove DLS lr, lr
A DLS lr, lr instruction only moves lr to itself. It need not be emitted
on it's own to save a instruction in the loop preheader.

Differential Revision: https://reviews.llvm.org/D78916
2021-02-02 11:09:31 +00:00
David Green 64421988e3 [ARM] Regenerate LowOverheadLoops mir tests. NFC 2021-02-02 10:28:58 +00:00
Nikita Popov 835104a114 [LSR] Drop potentially invalid nowrap flags when switching to post-inc IV (PR46943)
When LSR converts a branch on the pre-inc IV into a branch on the
post-inc IV, the nowrap flags on the addition may no longer be valid.
Previously, a poison result of the addition might have been ignored,
in which case the program was well defined. After branching on the
post-inc IV, we might be branching on poison, which is undefined behavior.

Fix this by discarding nowrap flags which are not present on the SCEV
expression. Nowrap flags on the SCEV expression are proven by SCEV
to always hold, independently of how the expression will be used.
This is essentially the same fix we applied to IndVars LFTR, which
also performs this kind of pre-inc to post-inc conversion.

I believe a similar problem can also exist for getelementptr inbounds,
but I was not able to come up with a problematic test case. The
inbounds case would have to be addressed in a differently anyway
(as SCEV does not track this property).

Fixes https://bugs.llvm.org/show_bug.cgi?id=46943.

Differential Revision: https://reviews.llvm.org/D95286
2021-01-25 23:13:48 +01:00
David Green e7dc083a41 [ARM] Don't handle low overhead branches in AnalyzeBranch
It turns our that the BranchFolder and IfCvt does not like unanalyzable
branches that fall-through. This means that removing the unconditional
branches from the end of tail predicated instruction can run into
asserts and verifier issues.

This effectively reverts 372eb2bbb6, but
adds handling to t2DoLoopEndDec which are not branches, so can be safely
skipped.
2021-01-18 17:16:07 +00:00
David Green 372eb2bbb6 [ARM] Add low overhead loops terminators to AnalyzeBranch
This treats low overhead loop branches the same as jump tables and
indirect branches in analyzeBranch - they cannot be analyzed but the
direct branches on the end of the block may be removed. This helps
remove the unnecessary branches earlier, which can help produce better
codegen (and change block layout in a number of cases).

Differential Revision: https://reviews.llvm.org/D94392
2021-01-16 18:30:21 +00:00
David Green f5abf0bd48 [ARM] Tail predication with constant loop bounds
The TripCount for a predicated vector loop body will be
ceil(ElementCount/Width). This alters the conversion of an
active.lane.mask to a VCPT intrinsics to match.

Differential Revision: https://reviews.llvm.org/D94608
2021-01-15 18:17:31 +00:00
David Green a0770f9e4e [ARM] Constant tripcount tail predication loop tests. NFC 2021-01-15 18:02:07 +00:00
David Green 1de3e7fd62 [ARM] Improve handling of empty VPT blocks in tail predicated loops
A vpt block that just contains either VPST;VCTP or VPT;VCTP, once the
VCTP is removed will become invalid. This fixed the first by removing
the now empty block and bails out for the second, as we have no simple
way of converting a VPT to a VCMP.

Differential Revision: https://reviews.llvm.org/D92369
2020-12-14 11:17:01 +00:00
David Green 3f571be1c0 [ARM] Make t2DoLoopStartTP a terminator
Although this was something that I was hoping we would not have to do,
this patch makes t2DoLoopStartTP a terminator in order to keep it at the
end of it's block, so not allowing extra MVE instruction between it and
the end. With t2DoLoopStartTP's also starting tail predication regions,
it also marks them as having side effects. The t2DoLoopStart is still
not a terminator, giving it the extra scheduling freedom that can be
helpful, but now that we have a TP version they can be treated
differently.

Differential Revision: https://reviews.llvm.org/D91887
2020-12-11 09:23:57 +00:00
David Green 0447f3508f [ARM][RegAlloc] Add t2LoopEndDec
We currently have problems with the way that low overhead loops are
specified, with LR being spilled between the t2LoopDec and the t2LoopEnd
forcing the entire loop to be reverted late in the backend. As they will
eventually become a single instruction, this patch introduces a
t2LoopEndDec which is the combination of the two, combined before
registry allocation to make sure this does not fail.

Unfortunately this instruction is a terminator that produces a value
(and also branches - it only produces the value around the branching
edge). So this needs some adjustment to phi elimination and the register
allocator to make sure that we do not spill this LR def around the loop
(needing to put a spill after the terminator). We treat the loop very
carefully, making sure that there is nothing else like calls that would
break it's ability to use LR. For that, this adds a
isUnspillableTerminator to opt in the new behaviour.

There is a chance that this could cause problems, and so I have added an
escape option incase. But I have not seen any problems in the testing
that I've tried, and not reverting Low overhead loops is important for
our performance. If this does work then we can hopefully do the same for
t2WhileLoopStart and t2DoLoopStart instructions.

This patch also contains the code needed to convert or revert the
t2LoopEndDec in the backend (which just needs a subs; bne) and the code
pre-ra to create them.

Differential Revision: https://reviews.llvm.org/D91358
2020-12-10 12:14:23 +00:00
David Green 5abbf20f0f [ARM] Additional test for Min loop. NFC 2020-12-10 10:49:00 +00:00
David Green b0ce615b2d [ARM] Remove copies from low overhead phi inductions.
The phi created in a low overhead loop gets created with a default
register class it seems. There are then copied inserted between the low
overhead loop pseudo instructions (which produce/consume GPRlr
instructions) and the phi holding the induction. This patch removes
those as a step towards attempting to make t2LoopDec and t2LoopEnd a
single instruction, and appears useful in it's own right as shown in the
tests.

Differential Revision: https://reviews.llvm.org/D91267
2020-12-10 10:30:31 +00:00
David Green d9bf6245bf [ARM] Revert low overhead loops with calls before registry allocation.
This adds code to revert low overhead loops with calls in them before
register allocation. Ideally we would not create low overhead loops with
calls in them to begin with, but that can be difficult to always get
correct. If we want to try and glue together t2LoopDec and t2LoopEnd
into a single instruction, we need to ensure that no instructions use LR
in the loop. (Technically the final code can be better too, as it
doesn't need to use the same registers but that has not been optimized
for here, as reverting loops with calls is expected to be very rare).

It also adds a MVETailPredUtils.h header to share the revert code
between different passes, and provides a place to expand upon, with
RevertLoopWithCall becoming a place to perform other low overhead loop
alterations like removing copies or combining LoopDec and End into a
single instruction.

Differential Revision: https://reviews.llvm.org/D91273
2020-12-07 15:44:40 +00:00
Simon Pilgrim 1f2353734d [Thumb2] Regenerate predicated-liveout-unknown-lanes.ll test
Helps to reduce diff in D90113
2020-12-02 18:00:42 +00:00