Commit Graph

23 Commits

Author SHA1 Message Date
David Green 211ce51f27 [ARM] Clean up some tests, removing dead instructions. NFC 2021-05-22 13:38:00 +01:00
David Green bd516d24c1 [ARM] Move t2DoLoopStart reg alloc hint
This adjusts the place that the t2DoLoopStart reg allocation hint is
inserted, adding it in the ARMTPAndVPTOptimizaionPass in a similar place
as other tail predicated loop optimizations. This removes the need for
doing so in a custom inserter, and should make the hint more accurate,
only adding it where we expect to create a DLS (not DLSTP or WLS).
2021-03-11 17:56:19 +00:00
David Green 48230355e9 [ARM] Remove DLS lr, lr
A DLS lr, lr instruction only moves lr to itself. It need not be emitted
on it's own to save a instruction in the loop preheader.

Differential Revision: https://reviews.llvm.org/D78916
2021-02-02 11:09:31 +00:00
David Green 73a6cd4b6b [ARM] Add a RegAllocHint for hinting t2DoLoopStart towards LR
This hints the operand of a t2DoLoopStart towards using LR, which can
help make it more likely to become t2DLS lr, lr. This makes it easier to
move if needed (as the input is the same as the output), or potentially
remove entirely.

The hint is added after others (from COPY's etc) which still take
precedence. It needed to find a place to add the hint, which currently
uses the post isel custom inserter.

Differential Revision: https://reviews.llvm.org/D89883
2020-11-10 16:28:57 +00:00
David Green b2ac9681a7 [ARM] Alter t2DoLoopStart to define lr
This changes the definition of t2DoLoopStart from
t2DoLoopStart rGPR
to
GPRlr = t2DoLoopStart rGPR

This will hopefully mean that low overhead loops are more tied together,
and we can more reliably generate loops without reverting or being at
the whims of the register allocator.

This is a fairly simple change in itself, but leads to a number of other
required alterations.

 - The hardware loop pass, if UsePhi is set, now generates loops of the
   form:
       %start = llvm.start.loop.iterations(%N)
     loop:
       %p = phi [%start], [%dec]
       %dec = llvm.loop.decrement.reg(%p, 1)
       %c = icmp ne %dec, 0
       br %c, loop, exit
 - For this a new llvm.start.loop.iterations intrinsic was added, identical
   to llvm.set.loop.iterations but produces a value as seen above, gluing
   the loop together more through def-use chains.
 - This new instrinsic conceptually produces the same output as input,
   which is taught to SCEV so that the checks in MVETailPredication are not
   affected.
 - Some minor changes are needed to the ARMLowOverheadLoop pass, but it has
   been left mostly as before. We should now more reliably be able to tell
   that the t2DoLoopStart is correct without having to prove it, but
   t2WhileLoopStart and tail-predicated loops will remain the same.
 - And all the tests have been updated. There are a lot of them!

This patch on it's own might cause more trouble that it helps, with more
tail-predicated loops being reverted, but some additional patches can
hopefully improve upon that to get to something that is better overall.

Differential Revision: https://reviews.llvm.org/D89881
2020-11-10 15:57:58 +00:00
Amara Emerson 322d0afd87 [llvm][mlir] Promote the experimental reduction intrinsics to be first class intrinsics.
This change renames the intrinsics to not have "experimental" in the name.

The autoupgrader will handle legacy intrinsics.

Relevant ML thread: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140729.html

Differential Revision: https://reviews.llvm.org/D88787
2020-10-07 10:36:44 -07:00
Sam Parker b30adfb529 [ARM][LowOverheadLoops] Liveouts and reductions
Remove the code that tried to look for reduction patterns, since the
vectorizer and isel can now produce predicated arithmetic instructios
within the loop body. This has required some reorganisation and fixes
around live-out and predication checks, as well as looking for cases
where an input/output is initialised to zero.

Differential Revision: https://reviews.llvm.org/D86613
2020-08-28 13:56:16 +01:00
Sam Parker a3e41d4581 [ARM] Make MachineVerifier more strict about terminators
Fix the ARM backend's analyzeBranch so it doesn't ignore predicated
return instructions, and make the MachineVerifier rule more strict.

Differential Revision: https://reviews.llvm.org/D40061
2020-08-27 07:10:20 +01:00
Sjoerd Meijer c352e7fbda [ARM][MVE] Tail-predication: remove the BTC + 1 overflow checks
This adapts tail-predication to the new semantics of get.active.lane.mask as
defined in D86147. This means that:
- we can remove the BTC + 1 overflow checks because now the loop tripcount is
  passed in to the intrinsic,
- we can immediately use that value to setup a counter for the number of
  elements processed by the loop and don't need to materialize BTC + 1.

Differential Revision: https://reviews.llvm.org/D86303
2020-08-25 14:38:03 +01:00
Sjoerd Meijer 595270ae39 [ARM][MVE] Refactor option -disable-mve-tail-predication
This refactors option -disable-mve-tail-predication to take different arguments
so that we have 1 option to control tail-predication rather than several
different ones.

This is also a prep step for D82953, in which we want to reject reductions
unless that is requested with this option.

Differential Revision: https://reviews.llvm.org/D83133
2020-07-13 13:40:33 +01:00
Sam Parker 3ee580d017 [ARM][LowOverheadLoops] Handle reductions
While validating live-out values, record instructions that look like
a reduction. This will comprise of a vector op (for now only vadd),
a vorr (vmov) which store the previous value of vadd and then a vpsel
in the exit block which is predicated upon a vctp. This vctp will
combine the last two iterations using the vmov and vadd into a vector
which can then be consumed by a vaddv.

Once we have determined that it's safe to perform tail-predication,
we need to change this sequence of instructions so that the
predication doesn't produce incorrect code. This involves changing
the register allocation of the vadd so it updates itself and the
predication on the final iteration will not update the falsely
predicated lanes. This mimics what the vmov, vctp and vpsel do and
so we then don't need any of those instructions.

Differential Revision: https://reviews.llvm.org/D75533
2020-07-01 08:31:49 +01:00
Sjoerd Meijer d1522513d4 [ARM] Reimplement MVE Tail-Predication pass using @llvm.get.active.lane.mask
To set up a tail-predicated loop, we need to to calculate the number of
elements processed by the loop. We can now use intrinsic
@llvm.get.active.lane.mask() to do this, which is emitted by the vectoriser in
D79100. This intrinsic generates a predicate for the masked loads/stores, and
consumes the Backedge Taken Count (BTC) as its second argument. We can now use
that to reconstruct the loop tripcount, instead of the IR pattern match
approach we were using before.

Many thanks to Eli Friedman and Sam Parker for all their help with this work.

This also adds overflow checks for the different, new expressions that we
create: the loop tripcount, and the sub expression that calculates the
remaining elements to be processed. For the latter, SCEV is not able to
calculate precise enough bounds, so we work around that at the moment, but is
not entirely correct yet, it's conservative. The overflow checks can be
overruled with a force flag, which is thus potentially unsafe (but not really
because the vectoriser is the only place where this intrinsic is emitted at the
moment). It's also good to mention that the tail-predication pass is not yet
enabled by default.  We will follow up to see if we can implement these
overflow checks better, either by a change in SCEV or we may want revise the
definition of llvm.get.active.lane.mask.

Differential Revision: https://reviews.llvm.org/D79175
2020-06-17 15:17:42 +01:00
Sam Parker de3e65e60c [ARM][LowOverheadLoops] Check loop liveouts
Check that no Q-regs are live out of the loop, unless the instruction
within the loop is predicated on the vctp.

Differential Revision: https://reviews.llvm.org/D72713
2020-02-19 12:59:01 +00:00
Sjoerd Meijer 8cba99e2aa [ARM][MVE] Tail-Predication: rematerialise iteration count in exit blocks
This patch uses helper function rewriteLoopExitValues that is refactored in
D72602 to rematerialise the iteration count in exit blocks, so that we can
clean-up loop update expressions inside the hardware-loops later in
ARMLowOverheadLoops, which is necessary to get actual performance gains for
tail-predicated loops.

Differential Revision: https://reviews.llvm.org/D72714
2020-01-20 10:26:36 +00:00
David Green 5e51f75542 [ARM] Favour post inc for MVE loops
We were previously not necessarily favouring postinc for the MVE loads
and stores, leading to extra code prior to the loop to set up the
preinc. MVE in general can benefit from postinc (as we don't have
unrolled loops), and certain instructions like the VLD2's only post-inc
versions are available.

Differential Revision: https://reviews.llvm.org/D70790
2020-01-20 06:57:07 +00:00
Sjoerd Meijer d97cf1f889 [ARM][LowOverheadLoops] Remove dead loop update instructions.
After creating a low-overhead loop, the loop update instruction was still
lingering around hurting performance. This removes dead loop update
instructions, which in our case are mostly SUBS instructions.

To support this, some helper functions were added to MachineLoopUtils and
ReachingDefAnalysis to analyse live-ins of loop exit blocks and find uses
before a particular loop instruction, respectively.

This is a first version that removes a SUBS instruction when there are no other
uses inside and outside the loop block, but there are some more interesting
cases in test/CodeGen/Thumb2/LowOverheadLoops/mve-tail-data-types.ll which
shows that there is room for improvement. For example, we can't handle this
case yet:

    ..
    dlstp.32  lr, r2
  .LBB0_1:
    mov r3, r2
    subs  r2, #4
    vldrh.u32 q2, [r1], #8
    vmov  q1, q0
    vmla.u32  q0, q2, r0
    letp  lr, .LBB0_1
  @ %bb.2:
    vctp.32 r3
    ..

which is a lot more tricky because r2 is not only used by the subs, but also by
the mov to r3, which is used outside the low-overhead loop by the vctp
instruction, and that requires a bit of a different approach, and I will follow
up on this.

Differential Revision: https://reviews.llvm.org/D71007
2019-12-11 10:20:19 +00:00
David Green b1aba0378e [ARM] Enable MVE masked loads and stores
With the extra optimisations we have done, these should now be fine to
enable by default. Which is what this patch does.

Differential Revision: https://reviews.llvm.org/D70968
2019-12-09 11:37:34 +00:00
David Green b5315ae8ff [Codegen][ARM] Add addressing modes from masked loads and stores
MVE has a basic symmetry between it's normal loads/store operations and
the masked variants. This means that masked loads and stores can use
pre-inc and post-inc addressing modes, just like the standard loads and
stores already do.

To enable that, this patch adds all the relevant infrastructure for
treating masked loads/stores addressing modes in the same way as normal
loads/stores.

This involves:
- Adding an AddressingMode to MaskedLoadStoreSDNode, along with an extra
   Offset operand that is added after the PtrBase.
- Extending the IndexedModeActions from 8bits to 16bits to store the
   legality of masked operations as well as normal ones. This array is
   fairly small, so doubling the size still won't make it very large.
   Offset masked loads can then be controlled with
   setIndexedMaskedLoadAction, similar to standard loads.
- The same methods that combine to indexed loads, such as
   CombineToPostIndexedLoadStore, are adjusted to handle masked loads in
   the same way.
- The ARM backend is then adjusted to make use of these indexed masked
   loads/stores.
- The X86 backend is adjusted to hopefully be no functional changes.

Differential Revision: https://reviews.llvm.org/D70176
2019-11-26 16:21:01 +00:00
Sam Parker 28166816b0 [ARM][ReachingDefs] Remove dead code in loloops.
Add some more helper functions to ReachingDefs to query the uses of
a given MachineInstr and also to query whether two MachineInstrs use
the same def of a register.

For Arm, while tail-predicating, these helpers are used in the
low-overhead loops to remove the dead code that calculates the number
of loop iterations.

Differential Revision: https://reviews.llvm.org/D70240
2019-11-26 10:27:46 +00:00
Sam Parker 8978c12b39 [ARM][MVE] Tail predication conversion
This patch modifies ARMLowOverheadLoops to convert a predicated
vector low-overhead loop into a tail-predicatd one. This is currently
a very basic conversion, with the following restrictions:
- Operates only on single block loops.
- The loop can only contain a single vctp instruction.
- No other instructions can write to the vpr.
- We only allow a subset of the mve instructions in the loop.

TODO: Pass the number of elements, not the number of iterations to
dlstp/wlstp.

Differential Revision: https://reviews.llvm.org/D69945
2019-11-19 08:22:18 +00:00
Sam Parker 3ff961cabd [ARM][MVE] Change VPST to use, not def, VPR
Unlike VPT, VPST just uses the current value of VPR.P0.

Differential Revision: https://reviews.llvm.org/D69037

llvm-svn: 375087
2019-10-17 08:46:31 +00:00
Sam Parker aac03ae06a [ARM][MVE] Change VCTP operand
The VCTP instruction will calculate the predicate masked based upon
the number of elements that need to be processed. I had inserted the
sub before the vctp intrinsic and supplied it as the operand, but
this is incorrect as the phi should directly feed the vctp. The sub
is calculating the value for the next iteration.

Differential Revision: https://reviews.llvm.org/D67921

llvm-svn: 373188
2019-09-30 08:03:23 +00:00
Sam Parker 9feb429a33 [ARM][MVE] Remove old tail predicates
Remove any predicate that we replace with a vctp intrinsic, and try
to remove their operands too. Also look into the exit block to see if
there's any duplicates of the predicates that we've replaced and
clone the vctp to be used there instead.

Differential Revision: https://reviews.llvm.org/D67709

llvm-svn: 372567
2019-09-23 09:48:25 +00:00