Commit Graph

14 Commits

Author SHA1 Message Date
David Green 52e0cf9d61 [ARM] Enable subreg liveness
This enables subreg liveness in the arm backend when MVE is present,
which allows the register allocator to detect when subregister are
alive/dead, compared to only acting on full registers. This can helps
produce better code on MVE with the way MQPR registers are made up of
SPR registers, but is especially helpful for MQQPR and MQQQQPR
registers, where there are very few "registers" available and being able
to split them up into subregs can help produce much better code.

Differential Revision: https://reviews.llvm.org/D107642
2021-08-17 14:10:33 +01:00
David Green 48cef1fa8e [ARM] Create VMOVRRD from adjacent vector extracts
This adds a combine for extract(x, n); extract(x, n+1)  ->
VMOVRRD(extract x, n/2). This allows two vector lanes to be moved at the
same time in a single instruction, and thanks to the other VMOVRRD folds
we have added recently can help reduce the amount of executed
instructions. Floating point types are very similar, but will include a
bitcast to an integer type.

This also adds a shouldRewriteCopySrc, to prevent copy propagation from
DPR to SPR, which can break as not all DPR regs can be extracted from
directly.  Otherwise the machine verifier is unhappy.

Differential Revision: https://reviews.llvm.org/D100244
2021-04-20 15:15:43 +01:00
David Green 21a4faab60 [ARM] Move double vector insert patterns using vins to DAG combine
This removes the existing patterns for inserting two lanes into an
f16/i16 vector register using VINS, instead using a DAG combine to
pattern match the same code sequences. The tablegen patterns were
already on the large side (foreach LANE = [0, 2, 4, 6]) and were not
handling all the cases they could. Moving that to a DAG combine, whilst
not less code, allows us to better control and expand the selection of
VINSs. Additionally this allows us to remove the AddedComplexity on
VCVTT.

The extra trick that this has learned in the process is to move two
adjacent lanes using a single f32 vmov, allowing some extra
inefficiencies to be removed.

Differenial Revision: https://reviews.llvm.org/D96876
2021-02-22 09:29:47 +00:00
David Green c722575633 [ARM] Select VINS from vector inserts
This patch adds tablegen patterns for pairs of i16/f16 insert/extracts.
If we are inserting into two adjacent vector lanes (0 and 1 for
example), we can use either a vmov;vins or vmovx;vins to insert the pair
together, avoiding a round-trip from GRP registers. This is quite a
large patterns with a number of EXTRACT_SUBREG/INSERT_SUBREG/
COPY_TO_REGCLASS nodes, but hopefully as most of those become copies all
that will be cleaned up by further optimizations.

The VINS pattern was also adjusted to allow it to represent that it is
inserting into the top half of an existing register.

Differential Revision: https://reviews.llvm.org/D95381
2021-02-02 13:50:02 +00:00
David Green e1c1adf9dc [ARM] Match dual lane vmovs from insert_vector_elt
MVE has a dual lane vector move instruction, capable of moving two
general purpose registers into lanes of a vector register. They look
like one of:
  vmov q0[2], q0[0], r2, r0
  vmov q0[3], q0[1], r3, r1
They only accept these lane indices though (and only insert into an
i32), either moving lanes 1 and 3, or 0 and 2.

This patch adds some tablegen patterns for them, selecting from vector
inserts elements. Because the insert_elements are know to be
canonicalized to ascending order there are several patterns that we need
to select. These lane indices are:

3 2 1 0    -> vmovqrr 31; vmovqrr 20
3 2 1      -> vmovqrr 31; vmov 2
3 1        -> vmovqrr 31
2 1 0      -> vmovqrr 20; vmov 1
2 0        -> vmovqrr 20

With the top one being the most common. All other potential patterns of
lane indices will be matched by a combination of these and the
individual vmov pattern already present. This does mean that we are
selecting several machine instructions at once due to the need to
re-arrange the inserts, but in this case there is nothing else that will
attempt to match an insert_vector_elt node.

This is a recommit of 6cc3d80a84 after
fixing the backward instruction definitions.
2020-12-18 16:13:08 +00:00
David Green 6e913e4451 Revert "[ARM] Match dual lane vmovs from insert_vector_elt"
This one needed more testing.
2020-12-18 13:33:40 +00:00
David Green 6cc3d80a84 [ARM] Match dual lane vmovs from insert_vector_elt
MVE has a dual lane vector move instruction, capable of moving two
general purpose registers into lanes of a vector register. They look
like one of:
  vmov q0[2], q0[0], r2, r0
  vmov q0[3], q0[1], r3, r1
They only accept these lane indices though (and only insert into an
i32), either moving lanes 1 and 3, or 0 and 2.

This patch adds some tablegen patterns for them, selecting from vector
inserts elements. Because the insert_elements are know to be
canonicalized to ascending order there are several patterns that we need
to select. These lane indices are:

3 2 1 0    -> vmovqrr 31; vmovqrr 20
3 2 1      -> vmovqrr 31; vmov 2
3 1        -> vmovqrr 31
2 1 0      -> vmovqrr 20; vmov 1
2 0        -> vmovqrr 20

With the top one being the most common. All other potential patterns of
lane indices will be matched by a combination of these and the
individual vmov pattern already present. This does mean that we are
selecting several machine instructions at once due to the need to
re-arrange the inserts, but in this case there is nothing else that will
attempt to match an insert_vector_elt node.

Differential Revision: https://reviews.llvm.org/D92553
2020-12-15 15:58:52 +00:00
David Green eecba95067 [ARM] Replace arm vendor with none. NFC 2020-04-22 18:19:35 +01:00
David Green 1c5b143c99 [MVE] VMOVX patterns
This adds fp16 VMOVX patterns, using the same patterns as rL362482 with some
adjustments for MVE. It allows us to move fp16 registers without going into and
out of gprs.

VMOVX is able to move the top bits from a fp16 in a fp reg into the bottom bits
of another register, zeroing the rest. This can be used for odd MVE register
lanes. The top bits are not read by fp16 instructions, so no move is required
there if we are dealing with even lanes.

Differential revision: https://reviews.llvm.org/D66793

llvm-svn: 370184
2019-08-28 10:13:23 +00:00
David Green dc56995c57 [ARM] MVE vector for 64bit types
We need to make sure that we are sensibly dealing with vectors of types v2i64
and v2f64, even if most of the time we cannot generate native operations for
them. This mostly adds a lot of testing, plus fixes up a couple of the issues
found. And, or and xor can be legal for v2i64, and shifts combining needs a
slight fixup.

Differential Revision: https://reviews.llvm.org/D64316

llvm-svn: 366106
2019-07-15 18:42:54 +00:00
Simon Tatham bffd099d15 [ARM] MVE: allow soft-float ABI to pass vector types.
Passing a vector type over the soft-float ABI involves it being split
into four GPRs, so the first thing that has to happen at the start of
the function is to recombine those into a vector register. The ABI
types all vectors as v2f64, so we need to support BUILD_VECTOR for
that type, which I do in this patch by allowing it to be expanded in
terms of INSERT_VECTOR_ELT, and writing an ISel pattern for that in
turn. Similarly, I provide a rule for EXTRACT_VECTOR_ELT so that a
returned vector can be marshalled back into GPRs.

While I'm here, I've also added ISD::UNDEF to the list of operations
we turn back on in `setAllExpand`, because I noticed that otherwise it
gets expanded into a BUILD_VECTOR with explicit zero inputs, leading
to pointless machine instructions to zero out a vector register that's
about to have every lane overwritten of in any case.

Reviewers: dmgreen, ostannard

Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D63937

llvm-svn: 364910
2019-07-02 11:26:11 +00:00
David Green 9dbdfe6b78 [ARM] Add MVE mul patterns
This simply adds integer and floating point VMUL patterns for MVE, same as we
have add and sub.

Differential Revision: https://reviews.llvm.org/D63866

llvm-svn: 364643
2019-06-28 11:44:03 +00:00
David Green 62889b0ea5 [ARM] Select MVE fp add and sub
The same as integer arithmetic, we can add simple floating point MVE addition and
subtraction patterns.

Initial code by David Sherwood

Differential Revision: https://reviews.llvm.org/D63257

llvm-svn: 364629
2019-06-28 07:41:09 +00:00
David Green be05b85db9 [ARM] Select MVE add and sub
This adds the first few patterns for MVE code generation, adding simple integer
add and sub patterns.

Initial code by David Sherwood

Differential Revision: https://reviews.llvm.org/D63255

llvm-svn: 364627
2019-06-28 07:21:11 +00:00