Commit Graph

12 Commits

Author SHA1 Message Date
David Green 2cf0e52b85 [ARM] Add patterns for vmulh
Now that vmulh can be selected, this adds the MVE patterns to make it
legal and generate instructions.

Differential Revision: https://reviews.llvm.org/D88011
2021-05-26 09:22:12 +01:00
David Green 8cc437a8a1 [ARM] Extra predicated tests for VMULH. NFC 2021-05-25 22:24:06 +01:00
David Green bdd82c3f51 [ARM] Extra tests for MVE vhadd and vmulh. NFC 2021-05-20 14:13:39 +01:00
David Green 3a68c6d26c [ARM] Extend MVE lane interleaving to handle other non-instruction leaves
This extends the recent MVE lane interleaving passto handle other
non-instruction leaves, for which a new shuffle is added. This helps
especially for constants and potentially for arguments.

Differential Revision: https://reviews.llvm.org/D97289
2021-03-29 09:05:45 +01:00
Simon Pilgrim 69bc0990a9 [DAGCombiner] Enable SimplifyDemandedBits vector support for TRUNCATE (REAPPLIED).
Add DemandedElts support inside the TRUNCATE analysis.

REAPPLIED - this was reverted by @hans at rGa51226057fc3 due to an issue with vector shift amount types, which was fixed in rG935bacd3a724 and an additional test case added at rG0ca81b90d19d

Differential Revision: https://reviews.llvm.org/D56387
2021-01-21 13:01:34 +00:00
Hans Wennborg a51226057f Revert "[DAGCombiner] Enable SimplifyDemandedBits vector support for TRUNCATE"
It caused "Vector shift amounts must be in the same as their first arg"
asserts in Chromium builds. See the code review for repro instructions.

> Add DemandedElts support inside the TRUNCATE analysis.
>
> Differential Revision: https://reviews.llvm.org/D56387

This reverts commit cad4275d69.
2021-01-20 20:06:55 +01:00
Simon Pilgrim cad4275d69 [DAGCombiner] Enable SimplifyDemandedBits vector support for TRUNCATE
Add DemandedElts support inside the TRUNCATE analysis.

Differential Revision: https://reviews.llvm.org/D56387
2021-01-20 15:39:58 +00:00
David Green e1c1adf9dc [ARM] Match dual lane vmovs from insert_vector_elt
MVE has a dual lane vector move instruction, capable of moving two
general purpose registers into lanes of a vector register. They look
like one of:
  vmov q0[2], q0[0], r2, r0
  vmov q0[3], q0[1], r3, r1
They only accept these lane indices though (and only insert into an
i32), either moving lanes 1 and 3, or 0 and 2.

This patch adds some tablegen patterns for them, selecting from vector
inserts elements. Because the insert_elements are know to be
canonicalized to ascending order there are several patterns that we need
to select. These lane indices are:

3 2 1 0    -> vmovqrr 31; vmovqrr 20
3 2 1      -> vmovqrr 31; vmov 2
3 1        -> vmovqrr 31
2 1 0      -> vmovqrr 20; vmov 1
2 0        -> vmovqrr 20

With the top one being the most common. All other potential patterns of
lane indices will be matched by a combination of these and the
individual vmov pattern already present. This does mean that we are
selecting several machine instructions at once due to the need to
re-arrange the inserts, but in this case there is nothing else that will
attempt to match an insert_vector_elt node.

This is a recommit of 6cc3d80a84 after
fixing the backward instruction definitions.
2020-12-18 16:13:08 +00:00
David Green 6e913e4451 Revert "[ARM] Match dual lane vmovs from insert_vector_elt"
This one needed more testing.
2020-12-18 13:33:40 +00:00
David Green 6cc3d80a84 [ARM] Match dual lane vmovs from insert_vector_elt
MVE has a dual lane vector move instruction, capable of moving two
general purpose registers into lanes of a vector register. They look
like one of:
  vmov q0[2], q0[0], r2, r0
  vmov q0[3], q0[1], r3, r1
They only accept these lane indices though (and only insert into an
i32), either moving lanes 1 and 3, or 0 and 2.

This patch adds some tablegen patterns for them, selecting from vector
inserts elements. Because the insert_elements are know to be
canonicalized to ascending order there are several patterns that we need
to select. These lane indices are:

3 2 1 0    -> vmovqrr 31; vmovqrr 20
3 2 1      -> vmovqrr 31; vmov 2
3 1        -> vmovqrr 31
2 1 0      -> vmovqrr 20; vmov 1
2 0        -> vmovqrr 20

With the top one being the most common. All other potential patterns of
lane indices will be matched by a combination of these and the
individual vmov pattern already present. This does mean that we are
selecting several machine instructions at once due to the need to
re-arrange the inserts, but in this case there is nothing else that will
attempt to match an insert_vector_elt node.

Differential Revision: https://reviews.llvm.org/D92553
2020-12-15 15:58:52 +00:00
David Green 87c27e67bf [ARM] Update target triple in tests. NFC 2020-10-30 15:06:49 +00:00
David Green 9ff361b099 [ARM] VMULH tests for when other parts are working. NFC 2020-05-25 12:46:18 +01:00