This enables subreg liveness in the arm backend when MVE is present,
which allows the register allocator to detect when subregister are
alive/dead, compared to only acting on full registers. This can helps
produce better code on MVE with the way MQPR registers are made up of
SPR registers, but is especially helpful for MQQPR and MQQQQPR
registers, where there are very few "registers" available and being able
to split them up into subregs can help produce much better code.
Differential Revision: https://reviews.llvm.org/D107642
This adds a small fold for extract (ARM_BUILD_VECTOR) to fold to the
original node. This can help simplify the resulting codegen in some
cases.
Differential Revision: https://reviews.llvm.org/D104860
This adds another small fold for extract of a vdup, between a i32 and a
f32, converting to a BITCAST. This allows some extra folding to happen,
simplifying the resulting code.
Differential Revision: https://reviews.llvm.org/D104857
Register allocation may spill virtual registers to the stack, which can
increase alignment requirements of the stack frame. If the the function
did not require stack realignment before register allocation, the
registers required to do so may not be reserved/available. This results
in a stack frame that requires realignment but can not be realigned.
Instead, only increase the alignment of the stack if we are still able
to realign.
The register SpillAlignment will be ignored if we can't realign, and the
backend will be responsible for emitting the correct unaligned loads and
stores. This seems to be the assumed behaviour already, e.g.
ARMBaseInstrInfo::storeRegToStackSlot and X86InstrInfo::storeRegToStackSlot
are both `canRealignStack` aware.
Differential Revision: https://reviews.llvm.org/D103602
We create MMO's for the VLDn/VSTn intrinsics in ARMTargetLowering::
getTgtMemIntrinsic, but they do not currently make it ll the way through
ISel. This changes that in the various places it needs changing, making
sure that the MMO is propagate through to the final instruction. This
can help in scheduling, not treating the VLD2/VST2 as a scheduling
barrier.
Differential Revision: https://reviews.llvm.org/D101096
This adds a combine for extract(x, n); extract(x, n+1) ->
VMOVRRD(extract x, n/2). This allows two vector lanes to be moved at the
same time in a single instruction, and thanks to the other VMOVRRD folds
we have added recently can help reduce the amount of executed
instructions. Floating point types are very similar, but will include a
bitcast to an integer type.
This also adds a shouldRewriteCopySrc, to prevent copy propagation from
DPR to SPR, which can break as not all DPR regs can be extracted from
directly. Otherwise the machine verifier is unhappy.
Differential Revision: https://reviews.llvm.org/D100244
This removes the existing patterns for inserting two lanes into an
f16/i16 vector register using VINS, instead using a DAG combine to
pattern match the same code sequences. The tablegen patterns were
already on the large side (foreach LANE = [0, 2, 4, 6]) and were not
handling all the cases they could. Moving that to a DAG combine, whilst
not less code, allows us to better control and expand the selection of
VINSs. Additionally this allows us to remove the AddedComplexity on
VCVTT.
The extra trick that this has learned in the process is to move two
adjacent lanes using a single f32 vmov, allowing some extra
inefficiencies to be removed.
Differenial Revision: https://reviews.llvm.org/D96876
A One-Off Identity mask is a shuffle that is mostly an identity mask
from as single source but contains a single element out-of-place, either
from a different vector or from another position in the same vector. As
opposed to lowering this via a ARMISD::BUILD_VECTOR we can generate an
extract/insert pair directly. Under ARM with individually accessible
lane elements this often becomes a simple lane move.
This also alters the LowerVECTOR_SHUFFLEUsingMovs code to use v4f32 (not
v4i32), a more natural type for lane moves.
Differential Revision: https://reviews.llvm.org/D95551
This patch adds tablegen patterns for pairs of i16/f16 insert/extracts.
If we are inserting into two adjacent vector lanes (0 and 1 for
example), we can use either a vmov;vins or vmovx;vins to insert the pair
together, avoiding a round-trip from GRP registers. This is quite a
large patterns with a number of EXTRACT_SUBREG/INSERT_SUBREG/
COPY_TO_REGCLASS nodes, but hopefully as most of those become copies all
that will be cleaned up by further optimizations.
The VINS pattern was also adjusted to allow it to represent that it is
inserting into the top half of an existing register.
Differential Revision: https://reviews.llvm.org/D95381
The MVE VLD2/4 and VST2/4 instructions require the pointer to be aligned
to at least the size of the element type. This adds a check for that
into the ARM lowerInterleavedStore and lowerInterleavedLoad functions,
not creating the intrinsics if they are invalid for the alignment of
the load/store.
Unfortunately this is one of those bug fixes that does effect some
useful codegen, as we were able to sometimes do some nice lowering of
q15 types. But they can cause problem with low aligned pointers.
Differential Revision: https://reviews.llvm.org/D95319
MVE has a dual lane vector move instruction, capable of moving two
general purpose registers into lanes of a vector register. They look
like one of:
vmov q0[2], q0[0], r2, r0
vmov q0[3], q0[1], r3, r1
They only accept these lane indices though (and only insert into an
i32), either moving lanes 1 and 3, or 0 and 2.
This patch adds some tablegen patterns for them, selecting from vector
inserts elements. Because the insert_elements are know to be
canonicalized to ascending order there are several patterns that we need
to select. These lane indices are:
3 2 1 0 -> vmovqrr 31; vmovqrr 20
3 2 1 -> vmovqrr 31; vmov 2
3 1 -> vmovqrr 31
2 1 0 -> vmovqrr 20; vmov 1
2 0 -> vmovqrr 20
With the top one being the most common. All other potential patterns of
lane indices will be matched by a combination of these and the
individual vmov pattern already present. This does mean that we are
selecting several machine instructions at once due to the need to
re-arrange the inserts, but in this case there is nothing else that will
attempt to match an insert_vector_elt node.
This is a recommit of 6cc3d80a84 after
fixing the backward instruction definitions.
MVE has a dual lane vector move instruction, capable of moving two
general purpose registers into lanes of a vector register. They look
like one of:
vmov q0[2], q0[0], r2, r0
vmov q0[3], q0[1], r3, r1
They only accept these lane indices though (and only insert into an
i32), either moving lanes 1 and 3, or 0 and 2.
This patch adds some tablegen patterns for them, selecting from vector
inserts elements. Because the insert_elements are know to be
canonicalized to ascending order there are several patterns that we need
to select. These lane indices are:
3 2 1 0 -> vmovqrr 31; vmovqrr 20
3 2 1 -> vmovqrr 31; vmov 2
3 1 -> vmovqrr 31
2 1 0 -> vmovqrr 20; vmov 1
2 0 -> vmovqrr 20
With the top one being the most common. All other potential patterns of
lane indices will be matched by a combination of these and the
individual vmov pattern already present. This does mean that we are
selecting several machine instructions at once due to the need to
re-arrange the inserts, but in this case there is nothing else that will
attempt to match an insert_vector_elt node.
Differential Revision: https://reviews.llvm.org/D92553
This adds Post inc variants of the VLD2/4 and VST2/4 instructions in
MVE. It uses the same mechanism/nodes as Neon, transforming the
intrinsic+add pair into a ARMISD::VLD2_UPD, which gets selected to a
post-inc instruction. The code to do that is mostly taken from the
existing Neon code, but simplified as less variants are needed.
It also fills in some getTgtMemIntrinsic for the arm.mve.vld2/4
instrinsics, which allow the nodes to have MMO's, calculated as the full
length to the memory being loaded/stored.
Differential Revision: https://reviews.llvm.org/D71194
MVE doesn't have the range of shuffle instructions available in Neon. We
also cannot use the trick of cutting a difficult vector shuffle in half
to simplify things. Instead we need to be more careful about how we
lower shuffles.
This patch adds an extra combine that attempts to find "whole lane"
vmovs when lowering shuffles of smaller types. This helps us make some
shuffles a lot simpler, generating single lane movs for the parts that
can make use of it, falling back to the original shuffle for the rest.
Differential Revision: https://reviews.llvm.org/D69509
Alas, using half the available vector registers in a single instruction
is just too much for the register allocator to handle. The mve-vldst4.ll
test here fails when these instructions are enabled at present. This
patch disables the generation of VLD4 and VST4 by adding a
mve-max-interleave-factor option, which we currently default to 2.
Differential Revision: https://reviews.llvm.org/D71109
Now that we have the intrinsics, we can add VLD2/4 and VST2/4 lowering
for MVE. This works the same way as Neon, recognising the load/shuffles
combination and converting them into intrinsics in a pre-isel pass,
which just calls getMaxSupportedInterleaveFactor, lowerInterleavedLoad
and lowerInterleavedStore.
The main difference to Neon is that we do not have a VLD3 instruction.
Otherwise most of the code works very similarly, with just some minor
differences in the form of the intrinsics to work around. VLD3 is
disabled by making isLegalInterleavedAccessType return false for those
cases.
We may need some other future adjustments, such as VLD4 take up half the
available registers so should maybe cost more. This patch should get the
basics in though.
Differential Revision: https://reviews.llvm.org/D69392