This pass transforms loops that contain a conditional branch with induction
variable. For example, it transforms left code to right code:
newbound = min(n, c)
while (iv < n) { while(iv < newbound) {
A A
if (iv < c) B
B C
C }
} if (iv != n) {
while (iv < n) {
A
C
}
}
Differential Revision: https://reviews.llvm.org/D102234
Summary: The patch implements the mapping of the Yaml
information to XCOFF object file to enable the yaml2obj
tool for XCOFF. Currently only 32-bit is supported.
Reviewed By: jhenderson, shchenz
Differential Revision: https://reviews.llvm.org/D95505
Also adds support for live_support sections, no_dead_strip sections,
.no_dead_strip symbols.
Chromium Framework 345MB unstripped -> 250MB stripped
(vs 290MB unstripped -> 236M stripped with ld64).
Doing dead stripping is a bit faster than not, because so much less
data needs to be processed:
% ministat lld_*
x lld_nostrip.txt
+ lld_strip.txt
N Min Max Median Avg Stddev
x 10 3.929414 4.07692 4.0269079 4.0089678 0.044214794
+ 10 3.8129408 3.9025559 3.8670411 3.8642573 0.024779651
Difference at 95.0% confidence
-0.144711 +/- 0.0336749
-3.60967% +/- 0.839989%
(Student's t, pooled s = 0.0358398)
This interacts with many parts of the linker. I tried to add test coverage
for all added `isLive()` checks, so that some test will fail if any of them
is removed. I checked that the test expectations for the most part match
ld64's behavior (except for live-support-iterations.s, see the comment
in the test). Interacts with:
- debug info
- export tries
- import opcodes
- flags like -exported_symbol(s_list)
- -U / dynamic_lookup
- mod_init_funcs, mod_term_funcs
- weak symbol handling
- unwind info
- stubs
- map files
- -sectcreate
- undefined, dylib, common, defined (both absolute and normal) symbols
It's possible it interacts with more features I didn't think of,
of course.
I also did some manual testing:
- check-llvm check-clang check-lld work with lld with this patch
as host linker and -dead_strip enabled
- Chromium still starts
- Chromium's base_unittests still pass, including unwind tests
Implemenation-wise, this is InputSection-based, so it'll work for
object files with .subsections_via_symbols (which includes all
object files generated by clang). I first based this on the COFF
implementation, but later realized that things are more similar to ELF.
I think it'd be good to refactor MarkLive.cpp to look more like the ELF
part at some point, but I'd like to get a working state checked in first.
Mechanical parts:
- Rename canOmitFromOutput to wasCoalesced (no behavior change)
since it really is for weak coalesced symbols
- Add noDeadStrip to Defined, corresponding to N_NO_DEAD_STRIP
(`.no_dead_strip` in asm)
Fixes PR49276.
Differential Revision: https://reviews.llvm.org/D103324
It breaks up the function pass manager in the codegen pipeline.
With empty parameters, it looks at the -mllvm flag -rewrite-map-file.
This is likely not in use.
Add a check that we only have one function pass manager in the codegen
pipeline.
Some tests relied on the fact that we had a module pass somewhere in the
codegen pipeline.
addr-label.ll crashes on ARM due to this change. This is because a
ARMConstantPoolConstant containing a BasicBlock to represent a
blockaddress may hold an invalid pointer to a BasicBlock if the
blockaddress is invalidated by its BasicBlock getting removed. In that
case all referencing blockaddresses are RAUW a constant int. Making
ARMConstantPoolConstant::CVal a WeakVH fixes the crash, but I'm not sure
that's the right fix. As a workaround, create a barrier right before
ISel so that IR optimizations can't happen while a
ARMConstantPoolConstant has been created.
Reviewed By: rnk, MaskRay, compnerd
Differential Revision: https://reviews.llvm.org/D99707
Apparently ubsan errors are non-fatal by default. If you introduce UB
into LLVM and run the tests, if errors are not fatal, the test will
still produce the expected output and the tests will pass. In order to
make ubsan errors show up as test failures, they have to be made fatal.
Pass the -fno-sanitize-recover=all flag to make it so.
Differential Revision: https://reviews.llvm.org/D103298
lld/MachO/Driver.cpp and lld/MachO/SyntheticSections.cpp include
llvm/Config/config.h which doesn't exist when building standalone lld.
This patch replaces llvm/Config/config.h include with llvm/Config/llvm-config.h
just like it is in lld/ELF/Driver.cpp and HAVE_LIBXAR with LLVM_HAVE_LIXAR and
moves LLVM_HAVE_LIBXAR from config.h to llvm-config.h
Also it adds LLVM_HAVE_LIBXAR to LLVMConfig.cmake and links liblldMachO2.so
with XAR_LIB if LLVM_HAVE_LIBXAR is set.
Differential Revision: https://reviews.llvm.org/D102084
The LAM mode is currently untested by check-hwasan, so we only need
to build the runtime in aliasing mode. Because LAM mode will always
need to be conditional (because only certain hardware will support
it) we can always just disable the LAM lit tests if it ever starts
being tested.
Avoids a warning from the linker. The user still has to put the resource
directory on the linker search path, and I can't find a clean way to do
that automatically in gn.
This reverts commit 3b8ec86fd5.
Revert "[X86] Refine AMX fast register allocation"
This reverts commit c3f95e9197.
This pass breaks using LLVM in a multi-threaded environment by
introducing global state.
Reduces numbers of files built for clang-format from 575 to 449.
Requires two small changes:
1. Don't use llvm::ExceptionHandling in LangOptions. This isn't
even quite the right type since we don't use all of its values.
Tweaks the changes made in:
- https://reviews.llvm.org/D93215
- https://reviews.llvm.org/D93216
2. Move section name validation code added (long ago) in commit 30ba67439 out
of libBasic into Sema and base the check on the triple. This is a bit less
OOP-y, but completely in line with what we do in many other places in Sema.
No behavior change.
Differential Revision: https://reviews.llvm.org/D101463
Reverts parts of https://reviews.llvm.org/D17183, but keeps the
resetDataLayout() API and adds an assert that checks that datalayout string and
user label prefix are in sync.
Approach 1 in https://reviews.llvm.org/D17183#2653279
Reduces number of TUs build for 'clang-format' from 689 to 575.
I also implemented approach 2 in D100764. If someone feels motivated
to make us use DataLayout more, it's easy to revert this change here
and go with D100764 instead. I don't plan on doing more work in this
area though, so I prefer going with the smaller, more self-consistent change.
Differential Revision: https://reviews.llvm.org/D100776
This implements an LLVM tool that's flag- and output-compatible
with macOS's `otool` -- except for bugs, but from testing with both
`otool` and `xcrun otool-classic`, llvm-otool matches vanilla
otool's behavior very well already. It's not 100% perfect, but
it's a very solid start.
This uses the same approach as llvm-objcopy: llvm-objdump uses
a different OptTable when it's invoked as llvm-otool. This
is possible thanks to D100433.
Differential Revision: https://reviews.llvm.org/D100583
These are needed when buildling `clang-format` in a clean build dir.
It's a bit unfortunate that clang's lib/Basic depends on these
random TableGen targets. In the CMake build, this is less visible
because I think all llvm-tblgen's complete before all compiles there
(not sure though).
This is similar to D83530, but for llvm-objdump.
The motivation is the desire to add an `llvm-otool` symlink to
llvm-objdump that behaves like macOS's `otool`, using the same
technique the at llvm-objcopy uses to behave like `strip` (etc).
This change for the most part preserves behavior. In some cases,
it increases compatibility with GNU objdump a bit. For example,
the long options now require two dashes, and the long options
taking arguments for the most part now require a `=` in front
of the value. Exceptions are flags where tests passed the
value separately, for these the separate form is kept as
an alias to the = form.
The one-letter short form args are now joined or separate
and long longer accept a =, which also matches GNU objdump.
cl::opt<>s in libraries now have to be explicitly plumbed
through. This patch does that for --x86-asm-syntax=, but
there's hope that we can remove that again.
Differential Revision: https://reviews.llvm.org/D100433
Linux-only for now. Some mac bits stubbed out, but not tested.
Good enough for the tiny_race.c example at
https://clang.llvm.org/docs/ThreadSanitizer.html :
$ out/gn/bin/clang -fsanitize=address -g -O1 tiny_race.c
$ while true; do ./a.out || echo $? ; done
While here, also make `-fsanitize=address` work for .c files.
Differential Revision: https://reviews.llvm.org/D99795
This reverts commit 13aff21f0d,
since the CMake part relanded in c06a8f9caa.
The GN part is a bit simpler than last time due to the
prior simplifications in acea470c16.
RVV intrinsics has new overloading rule, please see
82aac7dad4
Changed:
1. Rename `generic` to `overloaded` because the new rule is not using C11 generic.
2. Change HasGeneric to HasNoMaskedOverloaded because all masked operations
support overloading api.
3. Add more overloaded tests due to overloading rule changed.
Differential Revision: https://reviews.llvm.org/D99189
Follow up from D92955 and D83636. This patch makes the base cpp files
OMP.cpp and ACC.cpp normal files and they now include the XXX.inc file
generated by tablegen. This reduces the number of file generated by the
DirectiveEmitter backend and makes it closer to the proposal in D83636.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D93560
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
Pass no longer handles skips. Pass now removes unnecessary
unconditional branches and lowers early termination branches.
Hence rename to SILateBranchLowering.
Move code to handle returns to epilog from SIPreEmitPeephole
into SILateBranchLowering. This means SIPreEmitPeephole only
contains optional optimisations, and all required transforms
are in SILateBranchLowering.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D98915
SIRemoveShortExecBranches is an optimisation so fits well in the
context of SIPreEmitPeephole.
Test changes relate to early termination from kills which have now
been lowered prior to considering branches for removal.
As these use s_cbranch the execz skips are now retained instead.
Currently either behaviour is valid as kill with EXEC=0 is a nop;
however, if early termination is used differently in future then
the new behaviour is the correct one.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D98917
- D96404 defaulted to libunwind which isn't provided by NDK r21
(or r22), so specify -rtlib=libgcc on non-arm32.
- D97993 means that we need to use --gcc-toolchain instead of -B
to let the driver find libgcc.
Generate a json file containing descriptions of AST classes and their
public accessors which return SourceLocation or SourceRange.
Use the JSON file to generate a C++ API and implementation for accessing
the source locations and method names for accessing them for a given AST
node.
This new API can be used to implement 'srcloc' output in clang-query:
http://ce.steveire.com/z/m_kTIo
The JSON file can also be used to generate bindings for other languages,
such as Python and Javascript:
https://steveire.wordpress.com/2019/04/30/the-future-of-ast-matching
In this first version of this feature, only the accessors for Stmt
classes are generated, not Decls, TypeLocs etc. Those can be added
after this change is reviewed, as this change is mostly about
infrastructure of these code generators.
Also in this version, the platforms/cmake configurations are excluded as
much as possible so that support can be added iteratively. Currently a
break on any platform causes a revert of the entire feature. This way,
the `OR WIN32` can be removed in a future commit and if it breaks the
buildbots, only that commit gets reverted, making the entire process
easier to manage.
Differential Revision: https://reviews.llvm.org/D93164
Generate a json file containing descriptions of AST classes and their
public accessors which return SourceLocation or SourceRange.
Use the JSON file to generate a C++ API and implementation for accessing
the source locations and method names for accessing them for a given AST
node.
This new API can be used to implement 'srcloc' output in clang-query:
http://ce.steveire.com/z/m_kTIo
The JSON file can also be used to generate bindings for other languages,
such as Python and Javascript:
https://steveire.wordpress.com/2019/04/30/the-future-of-ast-matching
In this first version of this feature, only the accessors for Stmt
classes are generated, not Decls, TypeLocs etc. Those can be added
after this change is reviewed, as this change is mostly about
infrastructure of these code generators.
Also in this version, the platforms/cmake configurations are excluded as
much as possible so that support can be added iteratively. Currently a
break on any platform causes a revert of the entire feature. This way,
the `OR WIN32` can be removed in a future commit and if it breaks the
buildbots, only that commit gets reverted, making the entire process
easier to manage.
Differential Revision: https://reviews.llvm.org/D93164
Generate a json file containing descriptions of AST classes and their
public accessors which return SourceLocation or SourceRange.
Use the JSON file to generate a C++ API and implementation for accessing
the source locations and method names for accessing them for a given AST
node.
This new API can be used to implement 'srcloc' output in clang-query:
http://ce.steveire.com/z/m_kTIo
The JSON file can also be used to generate bindings for other languages,
such as Python and Javascript:
https://steveire.wordpress.com/2019/04/30/the-future-of-ast-matching
In this first version of this feature, only the accessors for Stmt
classes are generated, not Decls, TypeLocs etc. Those can be added
after this change is reviewed, as this change is mostly about
infrastructure of these code generators.
Also in this version, the platforms/cmake configurations are excluded as
much as possible so that support can be added iteratively. Currently a
break on any platform causes a revert of the entire feature. This way,
the `OR WIN32` can be removed in a future commit and if it breaks the
buildbots, only that commit gets reverted, making the entire process
easier to manage.
Differential Revision: https://reviews.llvm.org/D93164