libMLIRPublicAPI.so came into existence early when the Python and C-API were being co-developed because the Python extensions need a single DSO which exports the C-API to link against. It really should never have been exported as a mondo library in the first place, which has caused no end of problems in different linking modes, etc (i.e. the CAPI tests depended on it).
This patch does a mechanical move that:
* Makes the C-API tests link directly to their respective libraries.
* Creates a libMLIRPythonCAPI as part of the Python bindings which assemble to exact DSO that they need.
This has the effect that the C-API is no longer monolithic and can be subset and used piecemeal in a modular fashion, which is necessary for downstreams to only pay for what they use. There are additional, more fundamental changes planned for how the Python API is assembled which should make it more out of tree friendly, but this minimal first step is necessary to break the fragile dependency between the C-API and Python API.
Downstream actions required:
* If using the C-API and linking against MLIRPublicAPI, you must instead link against its constituent components. As a reference, the Python API dependencies are in lib/Bindings/Python/CMakeLists.txt and approximate the full set of dependencies available.
* If you have a Python API project that was previously linking against MLIRPublicAPI (i.e. to add its own C-API DSO), you will want to `s/MLIRPublicAPI/MLIRPythonCAPI/` and all should be as it was. There are larger changes coming in this area but this part is incremental.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D106369
Split out GPU ops library from GPU transforms. This allows libraries to
depend on GPU Ops without needing/building its transforms.
Differential Revision: https://reviews.llvm.org/D105472
Extend the OpDSL with index attributes. After tensors and scalars, index attributes are the third operand type. An index attribute represents a compile-time constant that is limited to index expressions. A use cases are the strides and dilations defined by convolution and pooling operations.
The patch only updates the OpDSL. The C++ yaml codegen is updated by a followup patch.
Differential Revision: https://reviews.llvm.org/D104711
Add support to Python bindings for the MLIR execution engine to load a
specified list of shared libraries - for eg. to use MLIR runtime
utility libraries.
Differential Revision: https://reviews.llvm.org/D104009
This is both more efficient and more ergonomic than going
through an std::string, e.g. when using llvm::utostr and
in string concat cases.
Unfortunately we can't just overload ::get(). This causes an
ambiguity because both twine and stringref implicitly convert
from std::string.
Differential Revision: https://reviews.llvm.org/D103754
Currently, passes are registered on a per-dialect basis, which
provides the smallest footprint obviously. But for prototyping
and experimentation, a convenience "all passes" module is provided,
which registers all known MLIR passes in one run.
Usage in Python:
import mlir.all_passes_registration
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D103130
Also, fix a small typo where the "unsigned" splat variants were not
being created with an unsigned type.
Differential Revision: https://reviews.llvm.org/D102797
At the moment `MlirModule`s can be converted to `MlirOperation`s, but not
the other way around (at least not without going around the C API). This
makes it impossible to e.g. run passes over a `ModuleOp` created through
`mlirOperationCreate`.
Reviewed By: nicolasvasilache, mehdi_amini
Differential Revision: https://reviews.llvm.org/D102497
Provide an option to specify optimization level when creating an
ExecutionEngine via the MLIR JIT Python binding. Not only is the
specified optimization level used for code generation, but all LLVM
optimization passes at the optimization level are also run prior to
machine code generation (akin to the mlir-cpu-runner tool).
Default opt level continues to remain at level two (-O2).
Contributions in part from Prashant Kumar <prashantk@polymagelabs.com>
as well.
Differential Revision: https://reviews.llvm.org/D102551
First set of "boilerplate" to get sparse tensor
passes available through CAPI and Python.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D102362
* Adds dialect registration, hand coded 'encoding' attribute and test.
* An MLIR CAPI tablegen backend for attributes does not exist, and this is a relatively complicated case. I opted to hand code it in a canonical way for now, which will provide a reasonable blueprint for building out the tablegen version in the future.
* Also added a (local) CMake function for declaring new CAPI tests, since it was getting repetitive/buggy.
Differential Revision: https://reviews.llvm.org/D102141
This adds `mlirOperationSetOperand` to the IR C API, similar to the
function to get an operand.
In the Python API, this adds `operands[index] = value` syntax, similar
to the syntax to get an operand with `operands[index]`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D101398
Expose the debug flag as a readable and assignable property of a
dedicated class instead of a write-only function. Actually test the fact
of setting the flag. Move test to a dedicated file, it has zero relation
to context_managers.py where it was added.
Arguably, it should be promoted from mlir.ir to mlir module, but we are
not re-exporting the latter and this functionality is purposefully
hidden so can stay in IR for now. Drop unnecessary export code.
Refactor C API and put Debug into a separate library, fix it to actually
set the flag to the given value.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D100757
When Linalg named ops support was added, captures were omitted
from the body builder. This revision adds support for captures
which allows us to write FillOp in a more idiomatic fashion using
the _linalg_ops_ext mixin support.
This raises an issue in the generation of `_linalg_ops_gen.py` where
```
@property
def result(self):
return self.operation.results[0] if len(self.operation.results) > 1 else None
```.
The condition should be `== 1`.
This will be fixed in a separate commit.
Differential Revision: https://reviews.llvm.org/D100363
This CL introduces a generic attribute (called "encoding") on tensors.
The attribute currently does not carry any concrete information, but the type
system already correctly determines that tensor<8xi1,123> != tensor<8xi1,321>.
The attribute will be given meaning through an interface in subsequent CLs.
See ongoing discussion on discourse:
[RFC] Introduce a sparse tensor type to core MLIR
https://llvm.discourse.group/t/rfc-introduce-a-sparse-tensor-type-to-core-mlir/2944
A sparse tensor will look something like this:
```
// named alias with all properties we hold dear:
#CSR = {
// individual named attributes
}
// actual sparse tensor type:
tensor<?x?xf64, #CSR>
```
I see the following rough 5 step plan going forward:
(1) introduce this format attribute in this CL, currently still empty
(2) introduce attribute interface that gives it "meaning", focused on sparse in first phase
(3) rewrite sparse compiler to use new type, remove linalg interface and "glue"
(4) teach passes to deal with new attribute, by rejecting/asserting on non-empty attribute as simplest solution, or doing meaningful rewrite in the longer run
(5) add FE support, document, test, publicize new features, extend "format" meaning to other domains if useful
Reviewed By: stellaraccident, bondhugula
Differential Revision: https://reviews.llvm.org/D99548
This revision tightens up the handling of attributes for both named
and generic linalg ops.
To demonstrate the IR validity, a working e2e Linalg example is added.
Differential Revision: https://reviews.llvm.org/D99430
This revision adds support to properly add the body of registered
builtin named linalg ops.
At this time, indexing_map and iterator_type support is still
missing so the op is not executable yet.
Differential Revision: https://reviews.llvm.org/D99578
This exposes the ability to register Python functions with the JIT and
exposes them to the MLIR jitted code. The provided test case illustrates
the mechanism.
Differential Revision: https://reviews.llvm.org/D99562
Provide a registration mechanism for Linalg dialect-specific passes in C
API and Python bindings. These are being built into the dialect library
but exposed in separate headers (C) or modules (Python).
Differential Revision: https://reviews.llvm.org/D99431
Based on the following discussion:
https://llvm.discourse.group/t/rfc-memref-memory-shape-as-attribute/2229
The goal of the change is to make memory space property to have more
expressive representation, rather then "magic" integer values.
It will allow to have more clean ASM form:
```
gpu.func @test(%arg0: memref<100xf32, "workgroup">)
// instead of
gpu.func @test(%arg0: memref<100xf32, 3>)
```
Explanation for `Attribute` choice instead of plain `string`:
* `Attribute` classes allow to use more type safe API based on RTTI.
* `Attribute` classes provides faster comparison operator based on
pointer comparison in contrast to generic string comparison.
* `Attribute` allows to store more complex things, like structs or dictionaries.
It will allows to have more complex memory space hierarchy.
This commit preserve old integer-based API and implements it on top
of the new one.
Depends on D97476
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D96145
There is no need for the interface implementations to be exposed, opaque
registration functions are sufficient for all users, similarly to passes.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D97852
This offers the ability to create a JIT and invoke a function by passing
ctypes pointers to the argument and the result.
Differential Revision: https://reviews.llvm.org/D97523
This adds minimalistic bindings for the execution engine, allowing to
invoke the JIT from the C API. This is still quite early and
experimental and shouldn't be considered stable in any way.
Differential Revision: https://reviews.llvm.org/D96651
Just a pure method renaming.
It is a preparation step for replacing "memory space as raw integer"
with more generic "memory space as attribute", which will be done in
separate commit.
The `MemRefType::getMemorySpace` method will return `Attribute` and
become the main API, while `getMemorySpaceAsInt` will be declared as
deprecated and will be replaced in all in-tree dialects (also in separate
commits).
Reviewed By: mehdi_amini, rriddle
Differential Revision: https://reviews.llvm.org/D97476
This also exposed a bug in Dialect loading where it was not correctly identifying identifiers that had the dialect namespace as a prefix.
Differential Revision: https://reviews.llvm.org/D97431
`verifyConstructionInvariants` is intended to allow for verifying the invariants of an attribute/type on construction, and `getChecked` is intended to enable more graceful error handling aside from an assert. There are a few problems with the current implementation of these methods:
* `verifyConstructionInvariants` requires an mlir::Location for emitting errors, which is prohibitively costly in the situations that would most likely use them, e.g. the parser.
This creates an unfortunate code duplication between the verifier code and the parser code, given that the parser operates on llvm::SMLoc and it is an undesirable overhead to pre-emptively convert from that to an mlir::Location.
* `getChecked` effectively requires duplicating the definition of the `get` method, creating a quite clunky workflow due to the subtle different in its signature.
This revision aims to talk the above problems by refactoring the implementation to use a callback for error emission. Using a callback allows for deferring the costly part of error emission until it is actually necessary.
Due to the necessary signature change in each instance of these methods, this revision also takes this opportunity to cleanup the definition of these methods by:
* restructuring the signature of `getChecked` such that it can be generated from the same code block as the `get` method.
* renaming `verifyConstructionInvariants` to `verify` to match the naming scheme of the rest of the compiler.
Differential Revision: https://reviews.llvm.org/D97100
MLIRContext allows its users to access directly to the DialectRegistry it
contains. While sometimes useful for registering additional dialects on an
already existing context, this breaks the encapsulation by essentially giving
raw accesses to a part of the context's internal state. Remove this mutable
access and instead provide a method to append a given DialectRegistry to the
one already contained in the context. Also provide a shortcut mechanism to
construct a context from an already existing registry, which seems to be a
common use case in the wild. Keep read-only access to the registry contained in
the context in case it needs to be copied or used for constructing another
context.
With this change, DialectRegistry is no longer concerned with loading the
dialects and deciding whether to invoke delayed interface registration. Loading
is concentrated in the MLIRContext, and the functionality of the registry
better reflects its name.
Depends On D96137
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D96331
These properties were useful for a few things before traits had a better integration story, but don't really carry their weight well these days. Most of these properties are already checked via traits in most of the code. It is better to align the system around traits, and improve the performance/cost of traits in general.
Differential Revision: https://reviews.llvm.org/D96088
Replace MlirDialectRegistrationHooks with MlirDialectHandle, which under-the-hood is an opaque pointer to MlirDialectRegistrationHooks. Then we expose the functionality previously directly on MlirDialectRegistrationHooks, as functions which take the opaque MlirDialectHandle struct. This makes the actual structure of the registration hooks an implementation detail, and happens to avoid this issue: https://llvm.discourse.group/t/strange-swift-issues-with-dialect-registration-hooks/2759/3
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D96229
This reverts commit 511dd4f438 along with
a couple fixes.
Original message:
Now the context is the first, rather than the last input.
This better matches the rest of the infrastructure and makes
it easier to move these types to being declaratively specified.
Phabricator: https://reviews.llvm.org/D96111
Now the context is the first, rather than the last input.
This better matches the rest of the infrastructure and makes
it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D96111