Its possible for the clamp to have invalid min/max values on its range. To fix
this we validate the range of the min/max and clamp to a valid range.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D108256
LLVM considers global variables marked as externals to be defined within the module if it is initialized (including to an undef). Other external globals are considered as being defined externally and imported into the current translation unit. Lowering of MLIR Global Ops does not properly propagate undefined initializers, resulting in a global which is expected to be defined within the current TU, not being defined.
Differential Revision: https://reviews.llvm.org/D108252
Existing linalg.conv2d is not well optimized for performance. Changed to a
version that is more aligned for optimziation. Include the corresponding
transposes to use this optimized version.
This also splits the conv and depthwise conv into separate implementations
to avoid overly complex lowerings.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D107504
The conversion is a straightforward one-to-one mapping with optional unrolling
for nD vectors, similarly to other cast operations.
Depends On D107889
Reviewed By: cota, akuegel
Differential Revision: https://reviews.llvm.org/D107891
Dilation only requires increasing the padding on the left/right side of the
input, and including dilation in the convolution. This implementation still
lacks support for strided convolutions.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D107680
These ops were not ported to the nD vector conversion when it was introduced
and nobody needed them so far.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D107750
If the source value to load is bool, and we have native storage
capability support for the source bitwidth, we still cannot directly
rewrite uses; we need to perform casting to bool first.
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D107119
If the source value to store is bool, and we have native storage
capability support for the target bitwidth, we still cannot directly
store; we need to perform casting to match the target memref
element's bitwidth.
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D107114
Make broadcastable needs the output shape to determine whether the operation
includes additional broadcasting. Include some canonicalizations for TOSA
to remove unneeded reshape.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D106846
The verifier of the llvm.call operation was not checking for mismatches between
the number of operation results and the number of results in the signature of
the callee. Furthermore, it was possible to construct an llvm.call operation
producing an SSA value of !llvm.void type, which should not exist. Add the
verification and treat !llvm.void result type as absence of call results.
Update the GPU conversions to LLVM that were mistakenly assuming that it was
fine for llvm.call to produce values of !llvm.void type and ensure these calls
do not produce results.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D106937
- Fixed symbol insertion into `symNameToModuleMap`. Insertion
needs to happen whether symbols are renamed or not.
- Added check for the VCE triple and avoid dropping it.
- Disabled function deduplication. It requires more careful
rules. Right now it can remove different functions.
- Added tests for symbol rename listener.
- And some other code/comment cleanups.
Reviewed By: ergawy
Differential Revision: https://reviews.llvm.org/D106886
Includes a version of a quantized conv2D operations with a lowering from TOSA
to linalg with corresponding test. We keep the quantized and quantized variants
as separate named ops to avoid the additional operations for non-quantized
convolutions.
Differential Revision: https://reviews.llvm.org/D106407
Type conversion and argument materialization are context-free: there is no available information on which op / branch is currently being converted.
As a consequence, bare ptr convention cannot be handled as an argument materialization: it would apply irrespectively of the parent op.
This doesn't typecheck in the case of non-funcOp and we would see cases where a memref descriptor would be inserted in place of the pointer in another memref descriptor.
For now the proper behavior is to revert to a specific BarePtrFunc implementation and drop the blanket argument materialization logic.
This reverts the relevant piece of the conversion to LLVM to what it was before https://reviews.llvm.org/D105880 and adds a relevant test and documentation to avoid the mistake by whomever attempts this again in the future.
Reviewed By: arpith-jacob
Differential Revision: https://reviews.llvm.org/D106495
The unstrided transposed conv can be represented as a regular convolution.
Lower to this variant to handle the basic case. This includes transitioning from
the TC defined convolution operation and a yaml defined one.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D106389
Added the named op variants for quantized matmul and quantized batch matmul
with the necessary lowerings/tests from tosa's matmul/fully connected ops.
Current version does not use the contraction op interface as its verifiers
are not compatible with scalar operations.
Differential Revision: https://reviews.llvm.org/D105063
This deletes all the pooling ops in LinalgNamedStructuredOpsSpec.tc. All the
uses are replaced with the yaml pooling ops.
Reviewed By: gysit, rsuderman
Differential Revision: https://reviews.llvm.org/D106181
This simplifies the vector to LLVM lowering. Previously, both vector.load/store and vector.transfer_read/write lowered directly to LLVM. With this commit, there is a single path to LLVM vector load/store instructions and vector.transfer_read/write ops must first be lowered to vector.load/store ops.
* Remove vector.transfer_read/write to LLVM lowering.
* Allow non-unit memref strides on all but the most minor dimension for vector.load/store ops.
* Add maxTransferRank option to populateVectorTransferLoweringPatterns.
* vector.transfer_reads with changing element type can no longer be lowered to LLVM. (This functionality is needed only for SPIRV.)
Differential Revision: https://reviews.llvm.org/D106118
The dialect-specific cast between builtin (ex-standard) types and LLVM
dialect types was introduced long time before built-in support for
unrealized_conversion_cast. It has a similar purpose, but is restricted
to compatible builtin and LLVM dialect types, which may hamper
progressive lowering and composition with types from other dialects.
Replace llvm.mlir.cast with unrealized_conversion_cast, and drop the
operation that became unnecessary.
Also make unrealized_conversion_cast legal by default in
LLVMConversionTarget as the majority of convesions using it are partial
conversions that actually want the casts to persist in the IR. The
standard-to-llvm conversion, which is still expected to run last, cleans
up the remaining casts standard-to-llvm conversion, which is still
expected to run last, cleans up the remaining casts
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D105880
After the Math has been split out of the Standard dialect, the
conversion to the LLVM dialect remained as a huge monolithic pass.
This is undesirable for the same complexity management reasons as having
a huge Standard dialect itself, and is even more confusing given the
existence of a separate dialect. Extract the conversion of the Math
dialect operations to LLVM into a separate library and a separate
conversion pass.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D105702
After the MemRef has been split out of the Standard dialect, the
conversion to the LLVM dialect remained as a huge monolithic pass.
This is undesirable for the same complexity management reasons as having
a huge Standard dialect itself, and is even more confusing given the
existence of a separate dialect. Extract the conversion of the MemRef
dialect operations to LLVM into a separate library and a separate
conversion pass.
Reviewed By: herhut, silvas
Differential Revision: https://reviews.llvm.org/D105625
This class and classes that extend it are general utilities for any dialect
that is being converted into the LLVM dialect. They are in no way specific to
Standard-to-LLVM conversion and should not make their users depend on it.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D105542
Simplify vector unrolling pattern to be more aligned with rest of the
patterns and be closer to vector distribution.
The new implementation uses ExtractStridedSlice/InsertStridedSlice
instead of the Tuple ops. After this change the ops based on Tuple don't
have any more used so they can be removed.
This allows removing signifcant amount of dead code and will allow
extending the unrolling code going forward.
Differential Revision: https://reviews.llvm.org/D105381
"Standard-to-LLVM" conversion is one of the oldest passes in existence. It has
become quite large due to the size of the Standard dialect itself, which is
being split into multiple smaller dialects. Furthermore, several conversion
features are useful for any dialect that is being converted to the LLVM
dialect, which, without this refactoring, creates a dependency from those
conversions to the "standard-to-llvm" one.
Put several of the reusable utilities from this conversion to a separate
library, namely:
- type converter from builtin to LLVM dialect types;
- utility for building and accessing values of LLVM structure type;
- utility for building and accessing values that represent memref in the LLVM
dialect;
- lowering options applicable everywhere.
Additionally, remove the type wrapping/unwrapping notion from the type
converter that is no longer relevant since LLVM types has been reimplemented as
first-class MLIR types.
Reviewed By: pifon2a
Differential Revision: https://reviews.llvm.org/D105534
Split out GPU ops library from GPU transforms. This allows libraries to
depend on GPU Ops without needing/building its transforms.
Differential Revision: https://reviews.llvm.org/D105472
Remove `getDynOperands` and `createOrFoldDimOp` from MemRef.h to decouple MemRef a bit from Tensor. These two functions are used in other dialects/transforms.
Differential Revision: https://reviews.llvm.org/D105260
* Split memref.dim into two operations: memref.dim and tensor.dim. Both ops have the same builder interface and op argument names, so that they can be used with templates in patterns that apply to both tensors and memrefs (e.g., some patterns in Linalg).
* Add constant materializer to TensorDialect (needed for folding in affine.apply etc.).
* Remove some MemRefDialect dependencies, make some explicit.
Differential Revision: https://reviews.llvm.org/D105165
This patch brings support for setting runtime preemption specifiers of
LLVM's GlobalValues. In LLVM semantics, if the `dso_local` attribute
is not explicitly requested, then it is inferred based on linkage and
visibility. We model this same behavior with a UnitAttribute: if it is
present, then we explicitly request the GlobalValue to marked as
`dso_local`, otherwise we rely on the GlobalValue itself to make this
decision.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D104983