This replaces the select chain for edge-padding with an scf.if that
performs the memory operation when the index is in bounds and uses the
pad value when it's not. For transfer_write the same mechanism is used,
skipping the store when the index is out of bounds.
The integration test has a bunch of cases of how I believe this should
work.
Differential Revision: https://reviews.llvm.org/D87241
When allowed, use 32-bit indices rather than 64-bit indices in the
SIMD computation of masks. This runs up to 2x and 4x faster on
a number of AVX2 and AVX512 microbenchmarks.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D87116
Legacy implementation of the LLVM dialect in MLIR contained an instance of
llvm::Module as it was required to parse LLVM IR types. The access to the data
layout of this module was exposed to the users for convenience, but in practice
this layout has always been the default one obtained by parsing an empty layout
description string. Current implementation of the dialect no longer relies on
wrapping LLVM IR types, but it kept an instance of DataLayout for
compatibility. This effectively forces a single data layout to be used across
all modules in a given MLIR context, which is not desirable. Remove DataLayout
from the LLVM dialect and attach it as a module attribute instead. Since MLIR
does not yet have support for data layouts, use the LLVM DataLayout in string
form with verification inside MLIR. Introduce the layout when converting a
module to the LLVM dialect and keep the default "" description for
compatibility.
This approach should be replaced with a proper MLIR-based data layout when it
becomes available, but provides an immediate solution to compiling modules with
different layouts, e.g. for GPUs.
This removes the need for LLVMDialectImpl, which is also removed.
Depends On D85650
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D85652
Using a shuffle for the last recursive step in progressive lowering not only
results in much more compact IR, but also more efficient code (since the
backend is no longer confused on subvector aliasing for longer vectors).
E.g. the following
%f = vector.shape_cast %v0: vector<1024xf32> to vector<32x32xf32>
yields much better x86-64 code that runs 3x faster than the original.
Reviewed By: bkramer, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D85482
Original modeling of LLVM IR types in the MLIR LLVM dialect had been wrapping
LLVM IR types and therefore required the LLVMContext in which they were created
to outlive them, which was solved by placing the LLVMContext inside the dialect
and thus having the lifetime of MLIRContext. This has led to numerous issues
caused by the lack of thread-safety of LLVMContext and the need to re-create
LLVM IR modules, obtained by translating from MLIR, in different LLVM contexts
to enable parallel compilation. Similarly, llvm::Module had been introduced to
keep track of identified structure types that could not be modeled properly.
A recent series of commits changed the modeling of LLVM IR types in the MLIR
LLVM dialect so that it no longer wraps LLVM IR types and has no dependence on
LLVMContext and changed the ownership model of the translated LLVM IR modules.
Remove LLVMContext and LLVM modules from the implementation of MLIR LLVM
dialect and clean up the remaining uses.
The only part of LLVM IR that remains necessary for the LLVM dialect is the
data layout. It should be moved from the dialect level to the module level and
replaced with an MLIR-based representation to remove the dependency of the
LLVMDialect on LLVM IR library.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85445
Historical modeling of the LLVM dialect types had been wrapping LLVM IR types
and therefore needed access to the instance of LLVMContext stored in the
LLVMDialect. The new modeling does not rely on that and only needs the
MLIRContext that is used for uniquing, similarly to other MLIR types. Change
LLVMType::get<Kind>Ty functions to take `MLIRContext *` instead of
`LLVMDialect *` as first argument. This brings the code base closer to
completely removing the dependence on LLVMContext from the LLVMDialect,
together with additional support for thread-safety of its use.
Depends On D85371
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85372
This prepares for the removal of llvm::Module and LLVMContext from the
mlir::LLVMDialect.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85371
The intrinsics were already supported and vector.transfer_read/write lowered
direclty into these operations. By providing them as individual ops, however,
clients can used them directly, and it opens up progressively lowering transfer
operations at higher levels (rather than direct lowering to LLVM IR as done now).
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D85357
Previous type model in the LLVM dialect did not support identified structure
types properly and therefore could use stateless translations implemented as
free functions. The new model supports identified structs and must keep track
of the identified structure types present in the target context (LLVMContext or
MLIRContext) to avoid creating duplicate structs due to LLVM's type
auto-renaming. Expose the stateful type translation classes and use them during
translation, storing the state as part of ModuleTranslation.
Drop the test type translation mechanism that is no longer necessary and update
the tests to exercise type translation as part of the main translation flow.
Update the code in vector-to-LLVM dialect conversion that relied on stateless
translation to use the new class in a stateless manner.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85297
Introduces the expand and compress operations to the Vector dialect
(important memory operations for sparse computations), together
with a first reference implementation that lowers to the LLVM IR
dialect to enable running on CPU (and other targets that support
the corresponding LLVM IR intrinsics).
Reviewed By: reidtatge
Differential Revision: https://reviews.llvm.org/D84888
A new first-party modeling for LLVM IR types in the LLVM dialect has been
developed in parallel to the existing modeling based on wrapping LLVM `Type *`
instances. It resolves the long-standing problem of modeling identified
structure types, including recursive structures, and enables future removal of
LLVMContext and related locking mechanisms from LLVMDialect.
This commit only switches the modeling by (a) renaming LLVMTypeNew to LLVMType,
(b) removing the old implementaiton of LLVMType, and (c) updating the tests. It
is intentionally minimal. Separate commits will remove the infrastructure built
for the transition and update API uses where appropriate.
Depends On D85020
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85021
The current modeling of LLVM IR types in MLIR is based on the LLVMType class
that wraps a raw `llvm::Type *` and delegates uniquing, printing and parsing to
LLVM itself. This is model makes thread-safe type manipulation hard and is
being progressively replaced with a cleaner MLIR model that replicates the type
system. In the new model, LLVMType will no longer have an underlying LLVM IR
type. Restrict access to this type in the current model in preparation for the
change.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D84389
Introduces the scatter/gather operations to the Vector dialect
(important memory operations for sparse computations), together
with a first reference implementation that lowers to the LLVM IR
dialect to enable running on CPU (and other targets that support
the corresponding LLVM IR intrinsics).
The operations can be used directly where applicable, or can be used
during progressively lowering to bring other memory operations closer to
hardware ISA support for a gather/scatter. The semantics of the operation
closely correspond to those of the corresponding llvm intrinsics.
Note that the operation allows for a dynamic index vector (which is
important for sparse computations). However, this first reference
lowering implementation "serializes" the address computation when
base + index_vector is converted to a vector of pointers. Exploring
how to use SIMD properly during these step is TBD. More general
memrefs and idiomatic versions of striding are also TBD.
Reviewed By: arpith-jacob
Differential Revision: https://reviews.llvm.org/D84039
Summary: The native alignment may generally not be used when lowering a vector.transfer to the underlying load/store operation. This revision fixes the unmasked load/store alignment to match that of the masked path.
Differential Revision: https://reviews.llvm.org/D83684
Summary:
These are semantically equivalent, but fmuladd allows decaying the op
into fmul+fadd if there is no fma instruction available. llvm.fma lowers
to scalar calls to libm fmaf, which is a lot slower.
Reviewers: nicolasvasilache, aartbik, ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D83666
The ConvertVectorToLLVM pass defines options that can be passed
on the command line (currently only reassociation of FP reductions
through -convert-vector-to-llvm='reassociate-fp-reductions). This
CL enables setting these options programmatically (forward looking
to more options than just reassociation, as well as setting the
values from code rather than command line).
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D83420
Rationale:
In general, passing "fastmath" from MLIR to LLVM backend is not supported, and even just providing such a feature for experimentation is under debate. However, passing fine-grained fastmath related attributes on individual operations is generally accepted. This CL introduces an option to instruct the vector-to-llvm lowering phase to annotate floating-point reductions with the "reassociate" fastmath attribute, which allows the LLVM backend to use SIMD implementations for such constructs. Oher lowering passes can start using this mechanism right away in cases where reassociation is allowed.
Benefit:
For some microbenchmarks on x86-avx2, speedups over 20 were observed for longer vector (due to cleaner, spill-free and SIMD exploiting code).
Usage:
mlir-opt --convert-vector-to-llvm="reassociate-fp-reductions"
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D82624
This revision removes the TypeConverter parameter passed to the apply* methods, and instead moves the responsibility of region type conversion to patterns. The types of a region can be converted using the 'convertRegionTypes' method, which acts similarly to the existing 'applySignatureConversion'. This method ensures that all blocks within, and including those moved into, a region will have the block argument types converted using the provided converter.
This has the benefit of making more of the legalization logic controlled by patterns, instead of being handled explicitly by the driver. It also opens up the possibility to support multiple type conversions at some point in the future.
This revision also adds a new utility class `FailureOr<T>` that provides a LogicalResult friendly facility for returning a failure or a valid result value.
Differential Revision: https://reviews.llvm.org/D81681
Summary:
The "i1" (viz. bool) type does not have a proper equivalent on the "C"
size. So, to avoid any ABIs issues, we simply use print_i32 on an i32
value of one or zero for true and false. This has the added advantage
that one less function needs to be implemented when porting the runtime
support library.
Reviewers: ftynse, bkramer, nicolasvasilache
Reviewed By: ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D82048
Use ::Adaptor alias instead uniformly. Makes the naming more consistent as
adaptor can refer to attributes now too.
Differential Revision: https://reviews.llvm.org/D81789
https://reviews.llvm.org/D79246 introduces alignment propagation for vector transfer operations. Unfortunately, the alignment calculation is incorrect and can result in crashes.
This revision fixes the calculation by using the natural alignment of the memref elemental type, instead of the resulting vector type.
If more alignment is desired, it can be done in 2 ways:
1. use a proper vector.type_cast to transform a memref<axbxcxdxf32> into a memref<axbxvector<cxdxf32>> giving a natural alignment of vector<cxdxf32>
2. add an alignment attribute to vector transfer operations and propagate it.
With this change the alignment in the relevant tests goes down from 128 to 4.
Lastly, a few minor cleanups are performed and the custom `isMinorIdentityMap` is deprecated.
Differential Revision: https://reviews.llvm.org/D80734
Summary:
Vector transfer ops semantic is extended to allow specifying a per-dimension `masked`
attribute. When the attribute is false on a particular dimension, lowering to LLVM emits
unmasked load and store operations.
Differential Revision: https://reviews.llvm.org/D80098
Summary:
First, compact implementation of lowering to LLVM IR. A bit more
challenging than the constant mask due to the dynamic indices, of course.
I like to hear if there are more efficient ways of doing this in LLVM,
but this for now at least gives us a functional reference implementation.
Reviewers: nicolasvasilache, ftynse, bkramer, reidtatge, andydavis1, mehdi_amini
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79954
In the Vector to LLVM conversion, the `replaceTransferOp` function calls
into a type converter that may fail and suppresses the status. Change
the function to return the failure status instead, Since it is called
from a pattern, the failure can be readily propagated to the rest of
infrastructure.
Enhance lowering logic and tests so vector.transfer_read and
vector.transfer_write take memrefs on non-zero addrspaces.
Differential Revision: https://reviews.llvm.org/D79023
Summary: This revision extends the lowering of vector transfers to work with n-D memref and 1-D vector where the permutation map is an identity on the most minor dimensions (1 for now).
Differential Revision: https://reviews.llvm.org/D78925
Summary:
Rather than having a full, recursive, lowering of vector.broadcast
to LLVM IR, it is much more elegant to have a progressive lowering
of each vector.broadcast into a lower dimensional vector.broadcast,
until only elementary vector operations remain. This results
in more elegant, step-wise code, that is easier to understand.
Also makes some optimizations in the generated code.
Reviewers: nicolasvasilache, mehdi_amini, andydavis1, grosul1
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78071
Rename mlir::applyPatternsGreedily -> applyPatternsAndFoldGreedily. The
new name is a more accurate description of the method - it performs
both, application of the specified patterns and folding of all ops in
the op's region irrespective of whether any patterns have been supplied.
Differential Revision: https://reviews.llvm.org/D77478
Summary:
This revision adds support to lower 1-D vector transfers to LLVM.
A mask of the vector length is created that compares the base offset + linear index to the dim of the vector.
In each position where this does not overflow (i.e. offset + vector index < dim), the mask is set to 1.
A notable fact is that the lowering uses llvm.dialect_cast to allow writing code in the simplest form by targeting the simplest mix of vector and LLVM dialects and
letting other conversions kick in.
Differential Revision: https://reviews.llvm.org/D77703
Summary: Some pattern rewriters, like dialect conversion, prohibit the unbounded recursion(or reapplication) of patterns on generated IR. Most patterns are not written with recursive application in mind, so will generally explode the stack if uncaught. This revision adds a hook to RewritePattern, `hasBoundedRewriteRecursion`, to signal that the pattern can safely be applied to the generated IR of a previous application of the same pattern. This allows for establishing a contract between the pattern and rewriter that the pattern knows and can handle the potential recursive application.
Differential Revision: https://reviews.llvm.org/D77782
Summary:
This is much cleaner, and fits the same structure as many other tablegen backends. This was not done originally as the CRTP in the pass classes made it overly verbose/complex.
Differential Revision: https://reviews.llvm.org/D77367
This revision removes all of the CRTP from the pass hierarchy in preparation for using the tablegen backend instead. This creates a much cleaner interface in the C++ code, and naturally fits with the rest of the infrastructure. A new utility class, PassWrapper, is added to replicate the existing behavior for passes not suitable for using the tablegen backend.
Differential Revision: https://reviews.llvm.org/D77350
ModulePass doesn't provide any special utilities and thus doesn't give enough benefit to warrant a special pass class. This revision replaces all usages with the more general OperationPass.
Differential Revision: https://reviews.llvm.org/D77339
This revision adds support for generating utilities for passes such as options/statistics/etc. that can be inferred from the tablegen definition. This removes additional boilerplate from the pass, and also makes it easier to remove the reliance on the pass registry to provide certain things(e.g. the pass argument).
Differential Revision: https://reviews.llvm.org/D76659
This removes the need to statically register conversion passes, and also puts all of the conversions within one centralized file.
Differential Revision: https://reviews.llvm.org/D76658
Summary:
This revision restructures the calling of vector transforms to make it more flexible to ask for lowering through LLVM matrix intrinsics.
This also makes sure we bail out in degenerate cases (i.e. 1) in which LLVM complains about not being able to scalarize.
Differential Revision: https://reviews.llvm.org/D76266
Summary: PatternState was a mechanism to pass state between the match and rewrite calls of a RewritePattern. With the rise of matchAndRewrite, this class is unused and unnecessary. This revision removes PatternState and simplifies PatternMatchResult to just be a LogicalResult. A future revision will replace all usages of PatternMatchResult/matchSuccess/matchFailure with LogicalResult equivalents.
Differential Revision: https://reviews.llvm.org/D76202
Summary:
This revision adds lowering of vector.contract to llvm.intr.matrix_multiply.
Note that there is currently a mismatch between the MLIR vector dialect which
expects row-major layout and the LLVM matrix intrinsics which expect column
major layout.
As a consequence, we currently only match a vector.contract with indexing maps
that express column-major matrix multiplication.
Other cases would require additional transposes and it is better to wait for
LLVM intrinsics to provide a per-operation attribute that would specify which
layout is expected.
A separate integration test, not submitted to MLIR core, has independently
verified that correct execution occurs on a 2x2x2 matrix multiplication.
Differential Revision: https://reviews.llvm.org/D76014
Summary:
The direct lowering of vector.broadcast into LLVM has been replaced by
progressive lowering into elementary vector ops. This also required a
small refactoring of a llvm.mlir test that used a direct vector.broadcast
operator (just to define a matmul).
Reviewers: nicolasvasilache, andydavis1, rriddle
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76143
Summary:
This replaces the direct lowering of vector.outerproduct to LLVM with progressive lowering into elementary vectors ops to avoid having the similar lowering logic at several places.
NOTE1: with the new progressive rule, the lowered llvm is slightly more elaborate than with the direct lowering, but the generated assembly is just as optimized; still if we want to stay closer to the original, we should add a "broadcast on extract" to shuffle rewrite (rather than special cases all the lowering steps)
NOTE2: the original outerproduct lowering code should now be removed but some linalg test work directly on vector and contain some dead code, so this requires another CL
Reviewers: nicolasvasilache, andydavis1
Reviewed By: nicolasvasilache, andydavis1
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75956
Summary: This op mirrors the llvm.intr counterpart and allows lowering + type conversions in a progressive fashion.
Differential Revision: https://reviews.llvm.org/D75775
Summary:
Paying off some technical debt in VectorOps, where I introduced a special
op for a fused accumulator into reduction to avoid some issues around
printing and parsing an optional accumulator. This CL merges the two
into one op again and does things the right way (still would be nice
to have "assemblyFormat" for optional operands though....).
Reviewers: nicolasvasilache, andydavis1, ftynse, rriddle
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75699
This is in preparation for the next patch D75141. The purpose is to
provide a single place where LLVM dialect registers its ops as
legal/illegal.
Reviewers: ftynse, mravishankar, herhut
Subscribers: jholewinski, bixia, sanjoy.google, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, csigg, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, llvm-commits
Differential Revision: https://reviews.llvm.org/D75140
Summary:
NFC - Moved StandardOps/Ops.h to a StandardOps/IR dir to better match surrounding
directories. This is to match other dialects, and prepare for moving StandardOps
related transforms in out for Transforms and into StandardOps/Transforms.
Differential Revision: https://reviews.llvm.org/D74940
Thus far IntegerType has been signless: a value of IntegerType does
not have a sign intrinsically and it's up to the specific operation
to decide how to interpret those bits. For example, std.addi does
two's complement arithmetic, and std.divis/std.diviu treats the first
bit as a sign.
This design choice was made some time ago when we did't have lots
of dialects and dialects were more rigid. Today we have much more
extensible infrastructure and different dialect may want different
modelling over integer signedness. So while we can say we want
signless integers in the standard dialect, we cannot dictate for
others. Requiring each dialect to model the signedness semantics
with another set of custom types is duplicating the functionality
everywhere, considering the fundamental role integer types play.
This CL extends the IntegerType with a signedness semantics bit.
This gives each dialect an option to opt in signedness semantics
if that's what they want and helps code sharing. The parser is
modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as
signed and unsigned integer types, respectively, leaving the
original `i[1-9][0-9]*` to continue to mean no indication over
signedness semantics. All existing dialects are not affected (yet)
as this is a feature to opt in.
More discussions can be found at:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ
Differential Revision: https://reviews.llvm.org/D72533
The existing name is an artifact dating back to the times when we did not have
a dedicated TypeConverter infrastructure. It is also confusing with with the
name of classes using it.
Differential revision: https://reviews.llvm.org/D74707
Summary:
This sets the basic framework for lowering vector.contract progressively
into simpler vector.contract operations until a direct vector.reduction
operation is reached. More details will be filled out progressively as well.
Reviewers: nicolasvasilache
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74520
Summary:
The `vector.fma` operation is portable enough across targets that we do not want
to keep it wrapped under `vector.outerproduct` and `llvm.intrin.fmuladd`.
This revision lifts the op into the vector dialect and implements the lowering to LLVM by using two patterns:
1. a pattern that lowers from n-D to (n-1)-D by unrolling when n > 2
2. a pattern that converts from 1-D to the proper LLVM representation
Reviewers: ftynse, stellaraccident, aartbik, dcaballe, jsetoain, tetuante
Reviewed By: aartbik
Subscribers: fhahn, dcaballe, merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74075
Summary:
This revision exposes the portable `llvm.fma` intrinsic in LLVMOps and uses it
in lieu of `llvm.fmuladd` when lowering the `vector.outerproduct` op to LLVM.
This guarantees proper `fma` instructions will be emitted if the target ISA
supports it.
`llvm.fmuladd` does not have this guarantee in its semantics, despite evidence
that the proper x86 instructions are emitted.
For more details, see https://llvm.org/docs/LangRef.html#llvm-fmuladd-intrinsic.
Reviewers: ftynse, aartbik, dcaballe, fhahn
Reviewed By: aartbik
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74219
Summary:
Rationale:
When lowering to LLVM for different rank insert (n vs k), the offset
arrays needs to drop one dimension (becomes n-1), but the strides
array needs to be preserved (remains k). With regression test.
Note that this example was actually in the documentation, so
extra important to do it right :-)
Reviewers: nicolasvasilache, andydavis1, ftynse
Reviewed By: nicolasvasilache, ftynse
Subscribers: Joonsoo, merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73733
Summary:
This diff implements the progressive lowering of insert_strided_slice.
Two cases appear:
1. when the source and dest vectors have different ranks, extract the dest
subvector at the proper offset and reduce to case 2.
2. when they have the same rank N:
a. if the source and dest type are the same, the insertion is trivial:
just forward the source
b. otherwise, iterate over all N-1 D subvectors and create an
extract/insert_strided_slice/insert replacement, reducing the problem
to vecotrs of the same N-1 rank.
This combines properly with the other conversion patterns to lower all the way to LLVM.
Reviewers: ftynse, rriddle, AlexEichenberger, andydavis1, tetuante, nicolasvasilache
Reviewed By: andydavis1
Subscribers: merge_guards_bot, mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72317
Summary:
This diff implements the progressive lowering of strided_slice to either:
1. extractelement + insertelement for the 1-D case
2. extract + optional strided_slice + insert for the n-D case.
This combines properly with the other conversion patterns to lower all the way to LLVM.
Appropriate tests are added.
Reviewers: ftynse, rriddle, AlexEichenberger, andydavis1, tetuante
Reviewed By: andydavis1
Subscribers: merge_guards_bot, mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72310
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
Similar to insert/extract vector instructions but
(1) work on 1-D vectors only
(2) allow for a dynamic index
%c3 = constant 3 : index
%0 = vector.insertelement %arg0, %arg1[%c : index] : vector<4xf32>
%1 = vector.extractelement %arg0[%c3 : index] : vector<4xf32>
PiperOrigin-RevId: 285792205
Since these operations lower to [insert|extract][element|value] at LLVM
dialect level, neither element nor value would correctly reflect the meaning.
PiperOrigin-RevId: 284240727
This CL refactors some of the MLIR vector dependencies to allow decoupling VectorOps, vector analysis, vector transformations and vector conversions from each other.
This makes the system more modular and allows extracting VectorToVector into VectorTransforms that do not depend on vector conversions.
This refactoring exhibited a bunch of cyclic library dependencies that have been cleaned up.
PiperOrigin-RevId: 283660308