Previously, ExecuteRegionOps with multiple return values would fail a round-trip test due to missing parenthesis around the types.
Differential Revision: https://reviews.llvm.org/D108402
Apply the "for loop peeling" pattern from SCF dialect transforms. This pattern splits scf.for loops into full and partial iterations. In the full iteration, all masked loads/stores are canonicalized to unmasked loads/stores.
Differential Revision: https://reviews.llvm.org/D107733
Simplify affine.min ops, enabling various other canonicalizations inside the peeled loop body.
affine.min ops such as:
```
map = affine_map<(d0)[s0, s1] -> (s0, -d0 + s1)>
%r = affine.min #affine.min #map(%iv)[%step, %ub]
```
are rewritten them into (in the case the peeled loop):
```
%r = %step
```
To determine how an affine.min op should be rewritten and to prove its correctness, FlatAffineConstraints is utilized.
Differential Revision: https://reviews.llvm.org/D107222
This shares more code with existing utilities. Also, to be consistent,
we moved dimension permutation on the DimOp to the tensor lowering phase.
This way, both pre-existing DimOps on sparse tensors (not likely but
possible) as well as compiler generated DimOps are handled consistently.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D108309
* Rename ids to values in FlatAffineValueConstraints.
* Overall cleanup of comments in FlatAffineConstraints and FlatAffineValueConstraints.
Differential Revision: https://reviews.llvm.org/D107947
* Extract "value" functionality of `FlatAffineConstraints` into a new derived `FlatAffineValueConstraints` class. Current users of `FlatAffineConstraints` can use `FlatAffineValueConstraints` without additional code changes, thus NFC.
* `FlatAffineConstraints` no longer associates dimensions with SSA Values. All functionality that requires this, is moved to `FlatAffineValueConstraints`.
* `FlatAffineConstraints` no longer makes assumptions about where Values associated with dimensions are coming from.
Differential Revision: https://reviews.llvm.org/D107725
This method bitcasts a DenseElementsAttr elementwise to one of the same
shape with a different element type.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D107612
These operations are not lowered to from any source dialect and are only
used for redundant tests. Removing these named ops, along with their
associated tests, will make migration to YAML operations much more
convenient.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D107993
Expand ParallelLoopTilingPass with an inbound_check mode.
In default mode, the upper bound of the inner loop is from the min op; in
inbound_check mode, the upper bound of the inner loop is the step of the outer
loop and an additional inbound check will be emitted inside of the inner loop.
This was 'FIXME' in the original codes and a typical usage is for GPU backends,
thus the outer loop and inner loop can be mapped to blocks/threads in seperate.
Differential Revision: https://reviews.llvm.org/D105455
The primary pattern for this pass clones many operations from producers
to consumers. Doing this top down prevents duplicated work when a
producer has multiple consumers, if it also is consuming another
linalg.generic.
As an example, a chain of ~2600 generics that are fused into ~70
generics was resulting in 16255 pattern invocations. This took 14
seconds on one machine but takes only 0.3 seconds with top-down
traversal.
Differential Revision: https://reviews.llvm.org/D107818
The approach for handling reductions in the outer most
dimension follows that for inner most dimensions, outlined
below
First, transpose to move reduction dims, if needed
Convert reduction from n-d to 2-d canonical form
Then, for outer reductions, we emit the appropriate op
(add/mul/min/max/or/and/xor) and combine the results.
Differential Revision: https://reviews.llvm.org/D107675
This is a bit cleaner and removes issues with 2d vectors. It also has a
big impact on constant folding, hence the test changes.
Differential Revision: https://reviews.llvm.org/D107896
Some folding cases are trivial to fold away, specifically no-op cases where
an operation's input and output are the same. Canonicalizing these away
removes unneeded operations.
The current version includes tensor cast operations to resolve shape
discreprencies that occur when an operation's result type differs from the
input type. These are resolved during a tosa shape propagation pass.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D107321
This enables querying shapes/values as shapes without mutating the IR
directly (e.g., towards enabling doing inference in analysis &
application steps, inferring function shape with constant from callsite,
...). Add a new ShapeAdaptor that abstracts over whether shape is from
Type or ShapedTypeComponents or DenseIntElementsAttribute. This adds new
accessors to ValueShapeRange to get Shape and value as shape, but
doesn't restrict or remove the previous way of accessing Type via the
Value for now, that does mean a less refined shape could be accidentally
queried and will be restricted in follow up.
Currently restricted Value query to what can be represented as Shape. So
only supports cases where constant subgraph evaluation's output is a
shape. I had considered making it more general, but without TBD extern
attribute concept or some such a user cannot today uniformly avoid
overhead.
Update TOSA ops and also the shape inference pass.
Differential Revision: https://reviews.llvm.org/D107768
Replace some code snippets With scf::ForOp methods. Additionally,
share a listener at one more point (although this pattern is still
not safe to roll back currently)
Differential Revision: https://reviews.llvm.org/D107754
Implements lowering dense to sparse conversion, for static tensor types only.
First step towards general sparse_tensor.convert support.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D107681
Perform scalar constant propagation for FPTruncOp only if the resulting value can be represented without precision loss or rounding.
Example:
%cst = constant 1.000000e+00 : f32
%0 = fptrunc %cst : f32 to bf16
-->
%cst = constant 1.000000e+00 : bf16
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D107518
CastOp::areCastCompatible does not check whether casts are definitely compatible.
When going from dynamic to static offset or stride, the canonicalization cannot
know whether it is really cast compatible. In that case, it can only canonicalize
to an alloc plus copy.
Differential Revision: https://reviews.llvm.org/D107545
Tested with gcc-10. Other compilers may generate additional warnings. This does not fix all warnings. There are a few extra ones in LLVMCore and MLIR.
* `OpEmitter::getAttrNameIndex`: -Wunused-function (function is private and not used anywhere)
* `PrintOpPass` copy constructor: -Wextra ("Base class should be explicitly initialized in the copy constructor")
* `LegalizeForLLVMExport.cpp`: -Woverflow (overflow is expected, silence warning by making the cast explicit)
Differential Revision: https://reviews.llvm.org/D107525
The existing vector transforms reduce the dimension of transfer_read
ops. However, beyond a certain point, the vector op actually has
to be reduced to a scalar load, since we can't load a zero-dimension
vector. This handles this case.
Note that in the longer term, it may be preferaby to support
zero-dimension vectors. see
https://llvm.discourse.group/t/should-we-have-0-d-vectors/3097.
Differential Revision: https://reviews.llvm.org/D103432
We can propagate the shape from tosa.cond_if operands into the true/false
regions then through the connected blocks. Then, using the tosa.yield ops
we can determine what all possible return types are.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D105940
Handles shape inference for identity, cast, and rescale. These were missed
during the initialy elementwise work. This includes resize shape propagation
which includes both attribute and input type based propagation.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D105845
This patch adds the critical construct to the OpenMP dialect. The
implementation models the definition in 2.17.1 of the OpenMP 5 standard.
A name and hint can be specified. The name is a global entity or has
external linkage, it is modelled as a FlatSymbolRefAttr. Hint is
modelled as an integer enum attribute.
Also lowering to LLVM IR using the OpenMP IRBuilder.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D107135
Silence clang-tidy warning in AffineOps.cpp due to the inability to see
through the typeswitch. NFC.
Differential Revision: https://reviews.llvm.org/D106125
Add ForLoopBoundSpecialization pass, which specializes scf.for loops into a "main loop" where `step` divides the iteration space evenly and into an scf.if that handles the last iteration.
This transformation is useful for vectorization and loop tiling. E.g., when vectorizing loads/stores, programs will spend most of their time in the main loop, in which only unmasked loads/stores are used. Only the in the last iteration (scf.if), slower masked loads/stores are used.
Subsequent commits will apply this transformation in the SparseDialect and in Linalg's loop tiling.
Differential Revision: https://reviews.llvm.org/D105804
Introduces a conversion from one (sparse) tensor type to another
(sparse) tensor type. See the operation doc for details. Actual
codegen for all cases is still TBD.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D107205