Existing implementation of affine loop nest builders relies on EDSC
ScopedContext, which is not used pervasively. Provide a common OpBuilder-based
helper function to construct a perfect nest of affine loops with the body of
the innermost loop populated by a callback. Use this function to implement the
EDSC version.
Affine "for" loops differ from SCF "for" loops by (1) not allowing to yield
values and (2) supporting short-hand form for constant bounds, which justifies
a separate implementation of the loop nest builder for the same of simplicity.
Differential Revision: https://reviews.llvm.org/D81955
Similarly to `scf::ForOp`, introduce additional `function_ref` arguments to
`AffineForOp::build` that can be used to populate the body of the loop during
its construction. Provide compatibility functions for constructing affine loop
nests using `edsc::ScopedContext`.
`edsc::AffineLoopNestBuilder` and reletad functionality is now deprecated and
will be removed soon, users are expected to switch to `affineLoopNestBuilder`
that provides similar functionality with a simpler OpBuilder-based
implementation.
Differential Revision: https://reviews.llvm.org/D81754
In the affine symbol and dimension check, the code currently assumes
`getAffineScope` and its users `isValidDim` and `isValidSymbol` are only called
on values defined in regions that have a parent Op with `AffineScope` trait.
This is not necessarily the case, and these functions may be called on valid IR
that does not satisfy this assumption. Return `nullptr` from `getAffineScope`
if there is no parent op with `AffineScope` trait. Treat this case
conservatively in `isValidSymbol` by only accepting as symbols the values that
are guaranteed to be symbols (constants, and certain operations). No
modifications are necessary to `isValidDim` that delegates most of the work to
`isValidDim`.
Differential Revision: https://reviews.llvm.org/D81753
Allow for dynamic indices in the `dim` operation.
Rather than an attribute, the index is now an operand of type `index`.
This allows to apply the operation to dynamically ranked tensors.
The correct lowering of dynamic indices remains to be implemented.
Differential Revision: https://reviews.llvm.org/D81551
This patch adds `affine.vector_load` and `affine.vector_store` ops to
the Affine dialect and lowers them to `vector.transfer_read` and
`vector.transfer_write`, respectively, in the Vector dialect.
Reviewed By: bondhugula, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D79658
Summary:
This makes a common pattern of
`dyn_cast_or_null<OpTy>(v.getDefiningOp())` more concise.
Differential Revision: https://reviews.llvm.org/D79681
Functions checking whether an SSA value is a valid dimension or symbol for
affine operations can be called on values defined in a detached region (a
region that is not yet attached to an operation), for example, during parsing
or operation construction. These functions will attempt to uncondtionally
dereference a pointer to the parent operation of a region, which may be null
(as fixed by the previous commit, uninitialized before that). Since one cannot
know to which operation a region will be attached, conservatively this
operation would not be a valid affine scope and act accordingly, instead of
crashing.
This is a wrapper around vector of NamedAttributes that keeps track of whether sorted and does some minimal effort to remain sorted (doing more, e.g., appending attributes in sorted order, could be done in follow up). It contains whether sorted and if a DictionaryAttr is queried, it caches the returned DictionaryAttr along with whether sorted.
Change MutableDictionaryAttr to always return a non-null Attribute even when empty (reserve null cases for errors). To this end change the getter to take a context as input so that the empty DictionaryAttr could be queried. Also create one instance of the empty dictionary attribute that could be reused without needing to lock context etc.
Update infer type op interface to use DictionaryAttr and use NamedAttrList to avoid incurring multiple conversion costs.
Fix bug in sorting helper function.
Differential Revision: https://reviews.llvm.org/D79463
Originally, these operations were folded only if all expressions in their
affine maps could be folded to a constant expression that can be then subject
to numeric min/max computation. This introduces a more advanced version that
partially folds the affine map by lifting individual constant expression in it
even if some of the expressions remain variable. The folding can update the
operation in place to use a simpler map. Note that this is not as powerful as
canonicalization, in particular this does not remove dimensions or symbols that
became useless. This allows for better composition of Linalg tiling and
promotion transformation, where the latter can handle some canonical forms of
affine.min that the folding can now produce.
Differential Revision: https://reviews.llvm.org/D79502
(A previous version of this, dd2c639c3c, was
reverted.)
Introduce op trait PolyhedralScope for ops to define a new scope for
polyhedral optimization / affine dialect purposes, thus generalizing
such scopes beyond FuncOp. Ops to which this trait is attached will
define a new scope for the consideration of SSA values as valid symbols
for the purposes of polyhedral analysis and optimization. Update methods
that check for dim/symbol validity to work based on this trait.
Differential Revision: https://reviews.llvm.org/D79060
Summary:
This change results in tests also being changed to prevent dead
affine.load operations from being folded away during rewrites.
Also move AffineStoreOp and AffineLoadOp to an ODS file.
Differential Revision: https://reviews.llvm.org/D78930
As we start defining more complex Ops, we increasingly see the need for
Ops-with-regions to be able to construct Ops within their regions in
their ::build methods. However, these methods only have access to
Builder, and not OpBuilder. Creating a local instance of OpBuilder
inside ::build and using it fails to trigger the operation creation
hooks in derived builders (e.g., ConversionPatternRewriter). In this
case, we risk breaking the logic of the derived builder. At the same
time, OpBuilder::create, which is by far the largest user of ::build
already passes "this" as the first argument, so an OpBuilder instance is
already available.
Update all ::build methods in all Ops in MLIR and Flang to take
"OpBuilder &" instead of "Builder *". Note the change from pointer and
to reference to comply with the common style in MLIR, this also ensures
all other users must change their ::build methods.
Differential Revision: https://reviews.llvm.org/D78713
Introduce op trait `PolyhedralScope` for ops to define a new scope for
polyhedral optimization / affine dialect purposes, thus generalizing
such scopes beyond FuncOp. Ops to which this trait is attached will
define a new scope for the consideration of SSA values as valid symbols
for the purposes of polyhedral analysis and optimization. Update methods
that check for dim/symbol validity to work based on this trait.
Differential Revision: https://reviews.llvm.org/D78863
This revision refactors the structure of the operand storage such that there is no additional memory cost for resizable operand lists until it is required. This is done by using two different internal representations for the operand storage:
* One using trailing operands
* One using a dynamically allocated std::vector<OpOperand>
This allows for removing the resizable operand list bit, and will free up APIs from needing to workaround non-resizable operand lists.
Differential Revision: https://reviews.llvm.org/D78875
Summary:
Modified AffineMap::get to remove support for the overload which allowed
an ArrayRef of AffineExpr but no context (and gathered the context from a
presumed first entry, resulting in bugs when there were 0 results).
Instead, we support only a ArrayRef and a context, and a version which
takes a single AffineExpr.
Additionally, removed some now needless case logic which previously
special cased which call to AffineMap::get to use.
Reviewers: flaub, bondhugula, rriddle!, nicolasvasilache, ftynse, ulysseB, mravishankar, antiagainst, aartbik
Subscribers: mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, bader, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78226
These have proved incredibly useful for interleaving values between a range w.r.t to streams. After this revision, the mlir/Support/STLExtras.h is empty. A followup revision will remove it from the tree.
Differential Revision: https://reviews.llvm.org/D78067
This revision moves the various range utilities present in MLIR to LLVM to enable greater reuse. This revision moves the following utilities:
* indexed_accessor_*
This is set of utility iterator/range base classes that allow for building a range class where the iterators are represented by an object+index pair.
* make_second_range
Given a range of pairs, returns a range iterating over the `second` elements.
* hasSingleElement
Returns if the given range has 1 element. size() == 1 checks end up being very common, but size() is not always O(1) (e.g., ilist). This method provides O(1) checks for those cases.
Differential Revision: https://reviews.llvm.org/D78064
Minor fixes and cleanup for ShapedType accessors, use
ShapedType::kDynamicSize, add ShapedType::isDynamicDim.
Differential Revision: https://reviews.llvm.org/D77710
Add a pattern rewriter utility to erase blocks (while notifying the
pattern rewriting driver of the erased ops). Use this to remove trivial
else blocks in affine.if ops.
Differential Revision: https://reviews.llvm.org/D77083
Add a method that given an affine map returns another with just its unique
results. Use this to drop redundant bounds in max/min for affine.for. Update
affine.for's canonicalization pattern and createCanonicalizedForOp to use
this.
Differential Revision: https://reviews.llvm.org/D77237
Summary:
Change AffineOps Dialect structure to better group both IR and Tranforms. This included extracting transforms directly related to AffineOps. Also move AffineOps to Affine.
Differential Revision: https://reviews.llvm.org/D76161