Split out GPU ops library from GPU transforms. This allows libraries to
depend on GPU Ops without needing/building its transforms.
Differential Revision: https://reviews.llvm.org/D105472
* Previously, we were only generating .h.inc files. We foresee the need to also generate implementations and this is a step towards that.
* Discussed in https://llvm.discourse.group/t/generating-cpp-inc-files-for-dialects/3732/2
* Deviates from the discussion above by generating a default constructor in the .cpp.inc file (and adding a tablegen bit that disables this in case if this is user provided).
* Generating the destructor started as a way to flush out the missing includes (produces a link error), but it is a strict improvement on its own that is worth doing (i.e. by emitting key methods in the .cpp file, we root vtables in one translation unit, which is a non-controversial improvement).
Differential Revision: https://reviews.llvm.org/D105070
Allow gpu ops implementing the async interface to already be async when running the GpuAsyncRegionPass.
That pass threads a 'current token' through a block with ops implementing the gpu async interface.
After this change, existing async ops (returning a !gpu.async.token) set the current token.
Existing synchronous `gpu.wait` ops reset the current token.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D103396
This is both more efficient and more ergonomic than going
through an std::string, e.g. when using llvm::utostr and
in string concat cases.
Unfortunately we can't just overload ::get(). This causes an
ambiguity because both twine and stringref implicitly convert
from std::string.
Differential Revision: https://reviews.llvm.org/D103754
In order to allow large matmul operations using the MMA ops we need to chain
operations this is not possible unless "DOp" and "COp" type have matching
layout so remove the "DOp" layout and force accumulator and result type to
match.
Added a test for the case where the MMA value is accumulated.
Differential Revision: https://reviews.llvm.org/D103023
Fix inconsistent MLIR CMake variable names. Consistently name them as
MLIR_ENABLE_<feature>.
Eg: MLIR_CUDA_RUNNER_ENABLED -> MLIR_ENABLE_CUDA_RUNNER
MLIR follows (or has mostly followed) the convention of naming
cmake enabling variables in the from MLIR_ENABLE_... etc. Using a
convention here is easy and also important for convenience. A counter
pattern was started with variables named MLIR_..._ENABLED. This led to a
sequence of related counter patterns: MLIR_CUDA_RUNNER_ENABLED,
MLIR_ROCM_RUNNER_ENABLED, etc.. From a naming standpoint, the imperative
form is more meaningful. Additional discussion at:
https://llvm.discourse.group/t/mlir-cmake-enable-variable-naming-convention/3520
Switch all inconsistent ones to the ENABLE form. Keep the couple of old
mappings needed until buildbot config is migrated.
Differential Revision: https://reviews.llvm.org/D102976
This makes it possible for targets to define their own MCObjectFileInfo.
This MCObjectFileInfo is then used to determine things like section alignment.
This is a follow up to D101462 and prepares for the RISCV backend defining the
text section alignment depending on the enabled extensions.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D101921
The current design uses a unique entry for each argument/result attribute, with the name of the entry being something like "arg0". This provides for a somewhat sparse design, but ends up being much more expensive (from a runtime perspective) in-practice. The design requires building a string every time we lookup the dictionary for a specific arg/result, and also requires N attribute lookups when collecting all of the arg/result attribute dictionaries.
This revision restructures the design to instead have an ArrayAttr that contains all of the attribute dictionaries for arguments and another for results. This design reduces the number of attribute name lookups to 1, and allows for O(1) lookup for individual element dictionaries. The major downside is that we can end up with larger memory usage, as the ArrayAttr contains an entry for each element even if that element has no attributes. If the memory usage becomes too problematic, we can experiment with a more sparse structure that still provides a lot of the wins in this revision.
This dropped the compilation time of a somewhat large TensorFlow model from ~650 seconds to ~400 seconds.
Differential Revision: https://reviews.llvm.org/D102035
This untangles the MCContext and the MCObjectFileInfo. There is a circular
dependency between MCContext and MCObjectFileInfo. Currently this dependency
also exists during construction: You can't contruct a MOFI without a MCContext
without constructing the MCContext with a dummy version of that MOFI first.
This removes this dependency during construction. In a perfect world,
MCObjectFileInfo wouldn't depend on MCContext at all, but only be stored in the
MCContext, like other MC information. This is future work.
This also shifts/adds more information to the MCContext making it more
available to the different targets. Namely:
- TargetTriple
- ObjectFileType
- SubtargetInfo
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D101462
Index type is an integer type of target-specific bitwidth present in many MLIR
operations (loops, memory accesses). Converting values of this type to
fixed-size integers has always been problematic. Introduce a data layout entry
to specify the bitwidth of `index` in a given layout scope, defaulting to 64
bits, which is a commonly used assumption, e.g., in constants.
Port builtin-to-LLVM type conversion to use this data layout entry when
converting `index` type and untie it from pointer size. This is particularly
relevant for GPU targets. Keep a possibility to forcibly override the index
type in lowerings.
Depends On D98525
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D98937
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127
This updates the codebase to pass the context when creating an instance of
OwningRewritePatternList, and starts removing extraneous MLIRContext
parameters. There are many many more to be removed.
Differential Revision: https://reviews.llvm.org/D99028
This change combines for ROCm what was done for CUDA in D97463, D98203, D98360, and D98396.
I did not try to compile SerializeToHsaco.cpp or test mlir/test/Integration/GPU/ROCM because I don't have an AMD card. I fixed the things that had obvious bit-rot though.
Reviewed By: whchung
Differential Revision: https://reviews.llvm.org/D98447
Add a feature to `EnumAttr` definition to generate
specialized Attribute class for the particular enumeration.
This class will inherit `StringAttr` or `IntegerAttr` and
will override `classof` and `getValue` methods.
With this class the enumeration predicate can be checked with simple
RTTI calls (`isa`, `dyn_cast`) and it will return the typed enumeration
directly instead of raw string/integer.
Based on the following discussion:
https://llvm.discourse.group/t/rfc-add-enum-attribute-decorator-class/2252
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D97836
If MLIR_CUDA_RUNNER_ENABLED, register a 'gpu-to-cubin' conversion pass to mlir-opt.
The next step is to switch CUDA integration tests from mlir-cuda-runner to mlir-opt + mlir-cpu-runner and remove mlir-cuda-runner.
Depends On D98279
Reviewed By: herhut, rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D98203
Instead of configuring kernel-to-cubin/rocdl lowering through callbacks, introduce a base class that target-specific passes can derive from.
Put the base class in GPU/Transforms, according to the discussion in D98203.
The mlir-cuda-runner will go away shortly, and the mlir-rocdl-runner as well at some point. I therefore kept the existing code path working and will remove it in a separate step.
Depends On D98168
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D98279
Just a pure method renaming.
It is a preparation step for replacing "memory space as raw integer"
with more generic "memory space as attribute", which will be done in
separate commit.
The `MemRefType::getMemorySpace` method will return `Attribute` and
become the main API, while `getMemorySpaceAsInt` will be declared as
deprecated and will be replaced in all in-tree dialects (also in separate
commits).
Reviewed By: mehdi_amini, rriddle
Differential Revision: https://reviews.llvm.org/D97476
Lower !gpu.async.tokens returned from async.execute regions to events instead of streams.
Make !gpu.async.token returned from !async.execute single-use.
This allows creating one event per use and destroying them without leaking or ref-counting.
Technically we only need this for stream/event-based lowering. I kept the code separate
from the rest of the gpu-async-region pass so that we can make this optional or move
to a separate pass as needed.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D96965
This commit introduced a cyclic dependency:
Memref dialect depends on Standard because it used ConstantIndexOp.
Std depends on the MemRef dialect in its EDSC/Intrinsics.h
Working on a fix.
This reverts commit 8aa6c3765b.
Create the memref dialect and move several dialect-specific ops without
dependencies to other ops from std dialect to this dialect.
Moved ops:
AllocOp -> MemRef_AllocOp
AllocaOp -> MemRef_AllocaOp
DeallocOp -> MemRef_DeallocOp
MemRefCastOp -> MemRef_CastOp
GetGlobalMemRefOp -> MemRef_GetGlobalOp
GlobalMemRefOp -> MemRef_GlobalOp
PrefetchOp -> MemRef_PrefetchOp
ReshapeOp -> MemRef_ReshapeOp
StoreOp -> MemRef_StoreOp
TransposeOp -> MemRef_TransposeOp
ViewOp -> MemRef_ViewOp
The roadmap to split the memref dialect from std is discussed here:
https://llvm.discourse.group/t/rfc-split-the-memref-dialect-from-std/2667
Differential Revision: https://reviews.llvm.org/D96425
These properties were useful for a few things before traits had a better integration story, but don't really carry their weight well these days. Most of these properties are already checked via traits in most of the code. It is better to align the system around traits, and improve the performance/cost of traits in general.
Differential Revision: https://reviews.llvm.org/D96088
This reverts commit 511dd4f438 along with
a couple fixes.
Original message:
Now the context is the first, rather than the last input.
This better matches the rest of the infrastructure and makes
it easier to move these types to being declaratively specified.
Phabricator: https://reviews.llvm.org/D96111
Now the context is the first, rather than the last input.
This better matches the rest of the infrastructure and makes
it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D96111
This makes ignoring a result explicit by the user, and helps to prevent accidental errors with dropped results. Marking LogicalResult as no discard was always the intention from the beginning, but got lost along the way.
Differential Revision: https://reviews.llvm.org/D95841
Do not cache gpu.async.token type so that the pass can be created before the GPU dialect is registered.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D94397
This class used to serve a few useful purposes:
* Allowed containing a null DictionaryAttr
* Provided some simple mutable API around a DictionaryAttr
The first of which is no longer an issue now that there is much better caching support for attributes in general, and a cache in the context for empty dictionaries. The second results in more trouble than it's worth because it mutates the internal dictionary on every action, leading to a potentially large number of dictionary copies. NamedAttrList is a much better alternative for the second use case, and should be modified as needed to better fit it's usage as a DictionaryAttrBuilder.
Differential Revision: https://reviews.llvm.org/D93442
This better matches the rest of the infrastructure, is much simpler, and makes it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D93432
- the !gpu.async.token is the second result of 'gpu.alloc async', not the first.
- async.execute construction takes operand types not yet wrapped in !async.value.
- fix typo
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D93156
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.
Differential Revision: https://reviews.llvm.org/D92435
Given that OpState already implicit converts to Operator*, this seems reasonable.
The alternative would be to add more functions to OpState which forward to Operation.
Reviewed By: rriddle, ftynse
Differential Revision: https://reviews.llvm.org/D92266