Commit Graph

40 Commits

Author SHA1 Message Date
Tobias Gysi 94643fda13 [mlir][linalg] Cleanup LinalgOp usage in dependence analysis (NFC).
Replace the uses of deprecated Structured Op Interface methods in DependenceAnalysis.cpp and DependenceAnalysis.h. This patch is based on https://reviews.llvm.org/D103394.

Differential Revision: https://reviews.llvm.org/D103411
2021-06-01 08:44:15 +00:00
Nicolas Vasilache 8cf650c554 [mlir][linalg] Add support for WAW fusion on tensors.
Differential Revision: https://reviews.llvm.org/D100603
2021-04-16 08:22:09 +00:00
Julian Gross e2310704d8 [MLIR] Create memref dialect and move dialect-specific ops from std.
Create the memref dialect and move dialect-specific ops
from std dialect to this dialect.

Moved ops:
AllocOp -> MemRef_AllocOp
AllocaOp -> MemRef_AllocaOp
AssumeAlignmentOp -> MemRef_AssumeAlignmentOp
DeallocOp -> MemRef_DeallocOp
DimOp -> MemRef_DimOp
MemRefCastOp -> MemRef_CastOp
MemRefReinterpretCastOp -> MemRef_ReinterpretCastOp
GetGlobalMemRefOp -> MemRef_GetGlobalOp
GlobalMemRefOp -> MemRef_GlobalOp
LoadOp -> MemRef_LoadOp
PrefetchOp -> MemRef_PrefetchOp
ReshapeOp -> MemRef_ReshapeOp
StoreOp -> MemRef_StoreOp
SubViewOp -> MemRef_SubViewOp
TransposeOp -> MemRef_TransposeOp
TensorLoadOp -> MemRef_TensorLoadOp
TensorStoreOp -> MemRef_TensorStoreOp
TensorToMemRefOp -> MemRef_BufferCastOp
ViewOp -> MemRef_ViewOp

The roadmap to split the memref dialect from std is discussed here:
https://llvm.discourse.group/t/rfc-split-the-memref-dialect-from-std/2667

Differential Revision: https://reviews.llvm.org/D98041
2021-03-15 11:14:09 +01:00
MaheshRavishankar 01defcc8d7 [mlir][Linalg] Extend tile+fuse to work on Linalg operation on tensors.
Differential Revision: https://reviews.llvm.org/D93086
2021-01-22 11:33:35 -08:00
MaheshRavishankar bce318f58d [mlir][Linalg] NFC: Refactor LinalgDependenceGraphElem to allow
representing dependence from producer result to consumer.

With Linalg on tensors the dependence between operations can be from
the result of the producer to the consumer. This change just does a
NFC refactoring of the LinalgDependenceGraphElem to allow representing
both OpResult and OpOperand*.

Differential Revision: https://reviews.llvm.org/D95208
2021-01-22 11:19:59 -08:00
nicolasvasilache b7ae1d3d2b [mlir][Linalg] Revisit the Linalg on tensors abstraction
This revision drops init_tensor arguments from Linalg on tensors and instead uniformizes the output buffers and output tensors to be consistent.
This significantly simplifies the usage of Linalg on tensors and is a stepping stone for
its evolution towards a mixed tensor and shape abstraction discussed in https://llvm.discourse.group/t/linalg-and-shapes/2421/19.

Differential Revision: https://reviews.llvm.org/D93469
2020-12-21 12:29:10 -08:00
Tres Popp 7ea94922fa [mlir] Allow RegionBranchOps in dependence analysis
This is to prevent assertion failures on scf.if and shape.assuming
operations where this is not enough information currently to handle any
aliasing information.

Differential Revision: https://reviews.llvm.org/D92963
2020-12-09 22:32:04 +01:00
MaheshRavishankar b13415b59b [mlir][Linalg] Add dependence type to LinalgDependenceGraphElem.
Differential Revision: https://reviews.llvm.org/D91502
2020-11-17 16:32:57 -08:00
Stephan Herhut ffac5b8e4c [mlir][linalg] Allow tensor_to_memref in dependence analysis
This enables the use of fusion on buffers in partially lowered
programs.

Differential Revision: https://reviews.llvm.org/D91613
2020-11-17 14:37:47 +01:00
MaheshRavishankar bf3861bf71 [mlir][Linalg] Change LinalgDependenceGraph to use LinalgOp.
Using LinalgOp will reduce the repeated conversion from Operation <->
LinalgOp.

Differential Revision: https://reviews.llvm.org/D91101
2020-11-13 12:34:38 -08:00
MaheshRavishankar 5ca20851e4 [mlir][Linalg] Improve the logic to perform tile and fuse with better dependence tracking.
This change does two main things
1) An operation might have multiple dependences to the same
   producer. Not tracking them correctly can result in incorrect code
   generation with fusion. To rectify this the dependence tracking
   needs to also have the operand number in the consumer.
2) Improve the logic used to find the fused loops making it easier to
   follow. The only constraint for fusion is that linalg ops (on
   buffers) have update semantics for the result. Fusion should be
   such that only one iteration of the fused loop (which is also a
   tiled loop) must touch only one (disjoint) tile of the output. This
   could be relaxed by allowing for recomputation that is the default
   when oeprands are tensors, or can be made legal with promotion of
   the fused view (in future).

Differential Revision: https://reviews.llvm.org/D90579
2020-11-12 00:25:24 -08:00
MaheshRavishankar 04776bd0ed [mlir][Linalg] Add more utility functions to LinalgDependenceGraph.
Reviewed By: ThomasRaoux

Differential Revision: https://reviews.llvm.org/D90582
2020-11-02 16:35:20 -08:00
Nicolas Vasilache 37e0fdd072 [mlir][Linalg] Add basic support for TileAndFuse on Linalg on tensors.
This revision allows the fusion of the producer of input tensors in the consumer under a tiling transformation (which produces subtensors).
Many pieces are still missing (e.g. support init_tensors, better refactor LinalgStructuredOp interface support, try to merge implementations and reuse code) but this still allows getting started.

The greedy pass itself is just for testing purposes and will be extracted in a separate test pass.

Differential revision: https://reviews.llvm.org/D89491
2020-10-26 17:19:08 +00:00
MaheshRavishankar 4a1682e931 [mlir][Linalg] Add some depedence query methods to LinalgDependenceGraph.
The methods allow to check
- if an operation has dependencies,
- if there is a dependence from one operation to another.

Differential Revision: https://reviews.llvm.org/D88993
2020-10-08 10:17:18 -07:00
Frederik Gossen 0841f7172b [MLIR][Linalg] Fix assertion in dependency analysis
The assertion falsely expected ranked memrefs only.  Now both, ranked and
unranked memrefs are allowed.

Differential Revision: https://reviews.llvm.org/D88080
2020-09-22 10:21:26 +00:00
River Riddle 9db53a1827 [mlir][NFC] Remove usernames and google bug numbers from TODO comments.
These were largely leftover from when MLIR was a google project, and don't really follow LLVM guidelines.
2020-07-07 01:40:52 -07:00
Lei Zhang 87e07b4c64 [mlir] Use memory effect to detecting allocation
This commit marks AllocLikeOp as MemAlloc in StandardOps.

Also in Linalg dependency analysis use memory effect to detect
allocation. This allows the dependency analysis to be more
general and recognize other allocation-like operations.

Differential Revision: https://reviews.llvm.org/D78705
2020-04-30 09:20:53 -04:00
Lei Zhang 2458cd27f1 [mlir] Add a ViewLikeOpInterface
This can help provide a common interface for view-like
ops so that for example Linalg's dependency analysis
can avoid relying on concrete ops.

Differential Revision: https://reviews.llvm.org/D78645
2020-04-24 10:02:56 -04:00
Hanhan Wang 6dd696ae4f [mlir][Linalg] Extend fusion to support WAW atm on buffers.
Summary:
The RAW fusion happens only if the produecer block dominates the consumer block.
The WAW pattern also works with the precondition. I.e., if a producer can
dominate the consumer, they can fairly fuse together.

Since they are all tilable, we can think the pattern like this way:

Input:
```
linalg_op1 view

tile_loop
  subview_2
  linalg_op2 subview_2
```

Tile the first Linalg op as same as the second Linalg.
```
tile_loop
  subview_1
  linalg_op1 subview_1

tile_loop
  subview_2
  liangl_op2 subview_2
```

Since the first Linalg op is tilable in the same way and the computation are
independently, it's fair to fuse it with the second Linalg op.
```
tile_loop
  subview_1
  linalg_op1 subview_1
  linalg_op2 subview_2
```

In short, this patch includes:
- Handling both RAW and WAW pattern.
- Adding a interface method to get input and output buffers.
- Exposing a method to get a StringRef of a dependency type.
- Fixing existing WAW tests and add one more use case: initialize the buffer
  before conv op.

Differential Revision: https://reviews.llvm.org/D76897
2020-03-31 21:33:50 -07:00
Rob Suderman 69d757c0e8 Move StandardOps/Ops.h to StandardOps/IR/Ops.h
Summary:
NFC - Moved StandardOps/Ops.h to a StandardOps/IR dir to better match surrounding
directories. This is to match other dialects, and prepare for moving StandardOps
related transforms in out for Transforms and into StandardOps/Transforms.

Differential Revision: https://reviews.llvm.org/D74940
2020-02-21 11:58:47 -08:00
Mehdi Amini 308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00
Nicolas Vasilache f52d71736b [mlir][Linalg] Update the semantics, verifier and test for Linalg with tensors.
Summary:
This diff fixes issues with the semantics of linalg.generic on tensors that appeared when converting directly from HLO to linalg.generic.
The changes are self-contained within MLIR and can be captured and tested independently of XLA.

The linalg.generic and indexed_generic are updated to:

To allow progressive lowering from the value world (a.k.a tensor values) to
the buffer world (a.k.a memref values), a linalg.generic op accepts
mixing input and output ranked tensor values with input and output memrefs.

```
%1 = linalg.generic #trait_attribute %A, %B {other-attributes} :
  tensor<?x?xf32>,
  memref<?x?xf32, stride_specification>
  -> (tensor<?x?xf32>)
```

In this case, the number of outputs (args_out) must match the sum of (1) the
number of output buffer operands and (2) the number of tensor return values.
The semantics is that the linalg.indexed_generic op produces (i.e.
allocates and fills) its return values.

Tensor values must be legalized by a buffer allocation pass before most
transformations can be applied. Such legalization moves tensor return values
into output buffer operands and updates the region argument accordingly.

Transformations that create control-flow around linalg.indexed_generic
operations are not expected to mix with tensors because SSA values do not
escape naturally. Still, transformations and rewrites that take advantage of
tensor SSA values are expected to be useful and will be added in the near
future.

Subscribers: bmahjour, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72555
2020-01-14 17:25:28 -05:00
River Riddle 2bdf33cc4c [mlir] NFC: Remove Value::operator* and Value::operator-> now that Value is properly value-typed.
Summary: These were temporary methods used to simplify the transition.

Reviewed By: antiagainst

Differential Revision: https://reviews.llvm.org/D72548
2020-01-11 08:54:39 -08:00
Alexandre Ganea 6656e961c0 [mlir] Fix compilation warnings
Fixes:
- (MSVC) F:\llvm-project\mlir\lib\Dialect\Linalg\Analysis\DependenceAnalysis.cpp(103): warning C4551: function call missing argument list
- (Clang) tools\mlir\lib\Dialect\SPIRV\SPIRVCanonicalization.inc(232,1): warning: unused function 'populateWithGenerated' [-Wunused-function]
2020-01-01 17:29:04 -05:00
River Riddle e62a69561f NFC: Replace ValuePtr with Value and remove it now that Value is value-typed.
ValuePtr was a temporary typedef during the transition to a value-typed Value.

PiperOrigin-RevId: 286945714
2019-12-23 16:36:53 -08:00
River Riddle ab46543ceb Resubmit: ReImplement the Value classes as value-typed objects wrapping an internal pointer storage.
This will enable future commits to reimplement the internal implementation of OpResult without needing to change all of the existing users. This is part of a chain of commits optimizing the size of operation results.

PiperOrigin-RevId: 286930047
2019-12-23 16:05:05 -08:00
MLIR Team 268365ab01 Automated rollback of commit f603a50109
PiperOrigin-RevId: 286924059
2019-12-23 15:54:44 -08:00
River Riddle f603a50109 ReImplement the Value classes as value-typed objects wrapping an internal pointer storage.
This will enable future commits to reimplement the internal implementation of OpResult without needing to change all of the existing users. This is part of a chain of commits optimizing the size of operation results.

PiperOrigin-RevId: 286919966
2019-12-23 15:44:00 -08:00
Mehdi Amini 56222a0694 Adjust License.txt file to use the LLVM license
PiperOrigin-RevId: 286906740
2019-12-23 15:33:37 -08:00
River Riddle 35807bc4c5 NFC: Introduce new ValuePtr/ValueRef typedefs to simplify the transition to Value being value-typed.
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ

This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.

PiperOrigin-RevId: 286844725
2019-12-22 22:00:23 -08:00
Nicolas Vasilache 782ae29678 Retire !linalg.buffer type - NFC
This type is not used anymore now that Linalg view and subview have graduated to std and that alignment is supported on alloc.

PiperOrigin-RevId: 285213424
2019-12-12 10:03:57 -08:00
Nicolas Vasilache 615b9ccdf0 Fix build warnings
Delete unused constexpr ints in LowerToLLVMDialect.
Add (void)toStringRef for non-debug builds.

Fixes tensorflow/mlir#232.

PiperOrigin-RevId: 280671014
2019-11-15 09:06:08 -08:00
Nicolas Vasilache 0bd6390b54 Deprecate linalg.subview in favor of std.subview
This CL uses the now standard std.subview in linalg.
Two shortcuts are currently taken to allow this port:
1. the type resulting from a view is currently degraded to fully dynamic to pass the SubViewOp verifier.
2. indexing into SubViewOp may access out of bounds since lowering to LLVM does not currently enforce it by construction.

These will be fixed in subsequent commits after discussions.

PiperOrigin-RevId: 280250129
2019-11-13 12:10:09 -08:00
Nicolas Vasilache 72040bf7c8 Update Linalg to use std.view
Now that a view op has graduated to the std dialect, we can update Linalg to use it and remove ops that have become obsolete. As a byproduct, the linalg buffer and associated ops can also disappear.

PiperOrigin-RevId: 279073591
2019-11-07 06:33:10 -08:00
Nicolas Vasilache bd94a10c02 Add Linalg pattern for producer-consumer fusion
This CL adds a simple pattern for specifying producer-consumer fusion on Linalg operations.

Implementing such an extension reveals some interesting properties.
Since Linalg operates on a buffer abstraction, the output buffers are specified as in/out parameters to the ops. As a consequence, there are no SSA use-def chains and one cannot specify complex dag input patterns with the current infrastructure.

Instead this CL uses constraints based on the existing linalg dependence analysis to focus the pattern and refine patterns based on the type of op that last wrote in a buffer.

This is a very local property and is less powerful than the generic dag specification based on SSA use-def chains.

This will be generalized in the future.

PiperOrigin-RevId: 277931503
2019-11-01 08:30:38 -07:00
Alex Zinenko f9a4d3bdb0 LinalgDependenceGraph: add const modifiers to accessors
MLIR const-correctness policy is to avoid having `const` on IR objects.
LinalgDependenceGraph is not an IR object but an auxiliary data structure.
Furthermore, it is not updated once constructed unlike IR objects. Add const
qualifiers to get* and find* methods of LinalgDependenceGraph since they are
not modifying the graph. This allows transformation functions that require the
dependence graph to take it by const-reference, clearly indicating that they
are not modifying it (and that the graph may have to be recomputed after the
transformation).

PiperOrigin-RevId: 277731608
2019-10-31 08:59:12 -07:00
Nicolas Vasilache 9f98bcda47 Support AllocOp terminal in Linalg::AliasAnalysis.
Now that linalg.view and strided memrefs are unified, there is no reason to
disallow AllocOp in alias analysis. This CLs adds support for AllocOp which allows writing shorter tests that do not require explicitly creating a view for
each operation.

PiperOrigin-RevId: 273303060
2019-10-07 09:01:18 -07:00
Nicolas Vasilache e36337a998 Unify Linalg types by using strided memrefs
This CL finishes the implementation of the Linalg + Affine type unification of the [strided memref RFC](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
As a consequence, the !linalg.view type, linalg::DimOp, linalg::LoadOp and linalg::StoreOp can now disappear and Linalg can use standard types everywhere.

PiperOrigin-RevId: 272187165
2019-10-01 05:23:21 -07:00
Nicolas Vasilache 445232df0b Decouple tiling from fusion in Linalg.
This CL modifies the linalg-fusion pass such that it does not tile anymore as part of the pass. Tiling is a separate concern that enables linalg fusion but should happen before.
This makes fusion more composable with other decisions.
In particular the fusion pass now becomes greedy and only applies the transformation on a best-effort basis.

This should also let fusion work in a multi-hop fashion with chains of producer/consumers.

Since the fusion pass does not perform tiling anymore, tests are rewritten to be in pretiled form and make the intent of the test clearer (albeit more verbose).

PiperOrigin-RevId: 271357741
2019-09-26 08:44:31 -07:00
Nicolas Vasilache b628194013 Move Linalg and VectorOps dialects to the Dialect subdir - NFC
PiperOrigin-RevId: 264277760
2019-08-19 17:11:38 -07:00