FillOp allows complex ops, and filling a properly sized buffer with
a default zero complex number is implemented.
Differential Revision: https://reviews.llvm.org/D99939
This commit introduced a cyclic dependency:
Memref dialect depends on Standard because it used ConstantIndexOp.
Std depends on the MemRef dialect in its EDSC/Intrinsics.h
Working on a fix.
This reverts commit 8aa6c3765b.
Create the memref dialect and move several dialect-specific ops without
dependencies to other ops from std dialect to this dialect.
Moved ops:
AllocOp -> MemRef_AllocOp
AllocaOp -> MemRef_AllocaOp
DeallocOp -> MemRef_DeallocOp
MemRefCastOp -> MemRef_CastOp
GetGlobalMemRefOp -> MemRef_GetGlobalOp
GlobalMemRefOp -> MemRef_GlobalOp
PrefetchOp -> MemRef_PrefetchOp
ReshapeOp -> MemRef_ReshapeOp
StoreOp -> MemRef_StoreOp
TransposeOp -> MemRef_TransposeOp
ViewOp -> MemRef_ViewOp
The roadmap to split the memref dialect from std is discussed here:
https://llvm.discourse.group/t/rfc-split-the-memref-dialect-from-std/2667
Differential Revision: https://reviews.llvm.org/D96425
This makes ignoring a result explicit by the user, and helps to prevent accidental errors with dropped results. Marking LogicalResult as no discard was always the intention from the beginning, but got lost along the way.
Differential Revision: https://reviews.llvm.org/D95841
This revision starts evolving the APIs to manipulate ops with offsets, sizes and operands towards a ValueOrAttr abstraction that is already used in folding under the name OpFoldResult.
The objective, in the future, is to allow such manipulations all the way to the level of ODS to avoid all the genuflexions involved in distinguishing between values and attributes for generic constant foldings.
Once this evolution is accepted, the next step will be a mechanical OpFoldResult -> ValueOrAttr.
Differential Revision: https://reviews.llvm.org/D95310
This revision drops init_tensor arguments from Linalg on tensors and instead uniformizes the output buffers and output tensors to be consistent.
This significantly simplifies the usage of Linalg on tensors and is a stepping stone for
its evolution towards a mixed tensor and shape abstraction discussed in https://llvm.discourse.group/t/linalg-and-shapes/2421/19.
Differential Revision: https://reviews.llvm.org/D93469
This better matches the rest of the infrastructure, is much simpler, and makes it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D93432
Given that OpState already implicit converts to Operator*, this seems reasonable.
The alternative would be to add more functions to OpState which forward to Operation.
Reviewed By: rriddle, ftynse
Differential Revision: https://reviews.llvm.org/D92266
Exposing some utility functions from Linalg to allow for promotion of
fused views outside of the core tile+fuse logic.
This is an alternative to patch D91322 which adds the promotion logic
to the tileAndFuse method. Downside with that approach is that it is
not easily customizable based on needs.
Differential Revision: https://reviews.llvm.org/D91503
This reverts commit f8284d21a8.
Revert "[mlir][Linalg] NFC: Expose some utility functions used for promotion."
This reverts commit 0c59f51592.
Revert "Remove unused isZero function"
This reverts commit 0f9f0a4046.
Change f8284d21 led to multiple failures in IREE compilation.
Exposing some utility functions from Linalg to allow for promotion of
fused views outside of the core tile+fuse logic.
This is an alternative to patch D91322 which adds the promotion logic
to the tileAndFuse method. Downside with that approach is that it is
not easily customizable based on needs.
Differential Revision: https://reviews.llvm.org/D91503
alloc/dealloc/copies.
Add options to LinalgPromotion to use callbacks for implementating the
allocation, deallocation of buffers used for the promoted subviews,
and to copy data into and from the original subviews to the allocated
buffers.
Also some misc. cleanup of the code.
Differential Revision: https://reviews.llvm.org/D80365
For now the promoted buffer is indexed using the `full view`. The full view might be
slightly bigger than the partial view (which is accounting for boundaries).
Unfortunately this does not compose easily with other transformations when multiple buffers
with shapes related to each other are involved.
Take `linalg.matmul A B C` (with A of size MxK, B of size KxN and C of size MxN) and suppose we are:
- Tiling over M by 100
- Promoting A only
This is producing a `linalg.matmul promoted_A B subview_C` where `promoted_A` is a promoted buffer
of `A` of size (100xK) and `subview_C` is a subview of size mxK where m could be smaller than 100 due
to boundaries thus leading to a possible incorrect behavior.
We propose to:
- Add a new parameter to the tiling promotion allowing to enable the use of the full tile buffer.
- By default all promoted buffers will be indexed by the partial view.
Note that this could be considered as a breaking change in comparison to the way the tiling promotion
was working.
Differential Revision: https://reviews.llvm.org/D79927
The existing implementation of SubViewOp::getRanges relies on all
offsets/sizes/strides to be dynamic values and does not work in
combination with canonicalization. This revision adds a
SubViewOp::getOrCreateRanges to create the missing constants in the
canonicalized case.
This allows reactivating the fused pass with staged pattern
applications.
However another issue surfaces that the SubViewOp verifier is now too
strict to allow folding. The existing folding pattern is turned into a
canonicalization pattern which rewrites memref_cast + subview into
subview + memref_cast.
The transform-patterns-matmul-to-vector can then be reactivated.
Differential Revision: https://reviews.llvm.org/D79759
Summary:
This makes a common pattern of
`dyn_cast_or_null<OpTy>(v.getDefiningOp())` more concise.
Differential Revision: https://reviews.llvm.org/D79681
This [discussion](https://llvm.discourse.group/t/viewop-isnt-expressive-enough/991/2) raised some concerns with ViewOp.
In particular, the handling of offsets is incorrect and does not match the op description.
Note that with an elemental type change, offsets cannot be part of the type in general because sizeof(srcType) != sizeof(dstType).
Howerver, offset is a poorly chosen term for this purpose and is renamed to byte_shift.
Additionally, for all intended purposes, trying to support non-identity layouts for this op does not bring expressive power but rather increases code complexity.
This revision simplifies the existing semantics and implementation.
This simplification effort is voluntarily restrictive and acts as a stepping stone towards supporting richer semantics: treat the non-common cases as YAGNI for now and reevaluate based on concrete use cases once a round of simplification occurred.
Differential revision: https://reviews.llvm.org/D79541
Summary: This revision introduces LinalgPromotionOptions to more easily control the application of promotion patterns. It also simplifies the different entry points into Promotion in preparation for some behavior change in subsequent revisions.
Differential Revision: https://reviews.llvm.org/D79489
This dialect contains various structured control flow operaitons, not only
loops, reflect this in the name. Drop the Ops suffix for consistency with other
dialects.
Note that this only moves the files and changes the C++ namespace from 'loop'
to 'scf'. The visible IR prefix remains the same and will be updated
separately. The conversions will also be updated separately.
Differential Revision: https://reviews.llvm.org/D79578
Linalg transformations are currently exposed as DRRs.
Unfortunately RewriterGen does not play well with the line of work on named linalg ops which require variadic operands and results.
Additionally, DRR is arguably not the right abstraction to expose compositions of such patterns that don't rely on SSA use-def semantics.
This revision abandons DRRs and exposes manually written C++ patterns.
Refactorings and cleanups are performed to uniformize APIs.
This refactoring will allow replacing the currently manually specified Linalg named ops.
A collateral victim of this refactoring is the `tileAndFuse` DRR, and the one associated test, which will be revived at a later time.
Lastly, the following 2 tests do not add value and are altered:
- a dot_perm tile + interchange test does not test anything new and is removed
- a dot tile + lower to loops does not need 2-D tiling and is trimmed.
The buffer allocated by a promotion can be subject to other transformations afterward. For example it could be vectorized, in which case it is needed to ensure that this buffer is memory-aligned.
Differential Revision: https://reviews.llvm.org/D78556
This revision removes the reliance of Promotion on `linalg.slice` which is meant
for the rank-reducing case.
Differential Revision: https://reviews.llvm.org/D77676
Summary:
This is much cleaner, and fits the same structure as many other tablegen backends. This was not done originally as the CRTP in the pass classes made it overly verbose/complex.
Differential Revision: https://reviews.llvm.org/D77367
This revision removes all of the CRTP from the pass hierarchy in preparation for using the tablegen backend instead. This creates a much cleaner interface in the C++ code, and naturally fits with the rest of the infrastructure. A new utility class, PassWrapper, is added to replicate the existing behavior for passes not suitable for using the tablegen backend.
Differential Revision: https://reviews.llvm.org/D77350
This revision adds support for generating utilities for passes such as options/statistics/etc. that can be inferred from the tablegen definition. This removes additional boilerplate from the pass, and also makes it easier to remove the reliance on the pass registry to provide certain things(e.g. the pass argument).
Differential Revision: https://reviews.llvm.org/D76659
This generates a Passes.td for all of the dialects that have transformation passes. This removes the need for global registration for all of the dialect passes.
Differential Revision: https://reviews.llvm.org/D76657
Summary:
Change AffineOps Dialect structure to better group both IR and Tranforms. This included extracting transforms directly related to AffineOps. Also move AffineOps to Affine.
Differential Revision: https://reviews.llvm.org/D76161
Summary:
To enable this, two changes are needed:
1) Add an optional attribute `padding` to linalg.conv.
2) Compute if the indices accessing is out of bound in the loops. If so, use the
padding value `0`. Otherwise, use the value derived from load.
In the patch, the padding only works for lowering without other transformations,
e.g., tiling, fusion, etc.
Differential Revision: https://reviews.llvm.org/D75722
Thus far IntegerType has been signless: a value of IntegerType does
not have a sign intrinsically and it's up to the specific operation
to decide how to interpret those bits. For example, std.addi does
two's complement arithmetic, and std.divis/std.diviu treats the first
bit as a sign.
This design choice was made some time ago when we did't have lots
of dialects and dialects were more rigid. Today we have much more
extensible infrastructure and different dialect may want different
modelling over integer signedness. So while we can say we want
signless integers in the standard dialect, we cannot dictate for
others. Requiring each dialect to model the signedness semantics
with another set of custom types is duplicating the functionality
everywhere, considering the fundamental role integer types play.
This CL extends the IntegerType with a signedness semantics bit.
This gives each dialect an option to opt in signedness semantics
if that's what they want and helps code sharing. The parser is
modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as
signed and unsigned integer types, respectively, leaving the
original `i[1-9][0-9]*` to continue to mean no indication over
signedness semantics. All existing dialects are not affected (yet)
as this is a feature to opt in.
More discussions can be found at:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ
Differential Revision: https://reviews.llvm.org/D72533
Summary:
Linalg's promotion pass was only supporting f32 buffers due to how the
zero value was build for the `fill` operation.
Moreover, `promoteSubViewOperands` was returning a vector with one entry
per float subview while omitting integer subviews. For a program
with only integer subviews the return vector would be of size 0.
However, `promoteSubViewsOperands` would try to access a non zero
number of entries of this vector, resulting in a sefgault.
Reviewers: nicolasvasilache, ftynse
Reviewed By: ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74532
This CL refactors EDSCs to layer them better and break unnecessary
dependencies. After this refactoring, the top-level EDSC target only
depends on IR but not on Dialects anymore and each dialect has its
own EDSC directory.
This simplifies the layering and breaks cyclic dependencies.
In particular, the declarative builder + folder are made explicit and
are now confined to Linalg.
As the refactoring occurred, certain classes and abstractions that were not
paying for themselves have been removed.
Differential Revision: https://reviews.llvm.org/D74302
Summary:
This diff moves the conversion pass declaration closer to its definition
and makes the namespacing of passes consistent with the rest of the
infrastructure (i.e. `mlir::linalg::createXXXPass` -> `mlir::createXXXPass`).
Reviewers: ftynse, jpienaar, mehdi_amini
Subscribers: rriddle, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72766
Summary:
This diff fixes issues with the semantics of linalg.generic on tensors that appeared when converting directly from HLO to linalg.generic.
The changes are self-contained within MLIR and can be captured and tested independently of XLA.
The linalg.generic and indexed_generic are updated to:
To allow progressive lowering from the value world (a.k.a tensor values) to
the buffer world (a.k.a memref values), a linalg.generic op accepts
mixing input and output ranked tensor values with input and output memrefs.
```
%1 = linalg.generic #trait_attribute %A, %B {other-attributes} :
tensor<?x?xf32>,
memref<?x?xf32, stride_specification>
-> (tensor<?x?xf32>)
```
In this case, the number of outputs (args_out) must match the sum of (1) the
number of output buffer operands and (2) the number of tensor return values.
The semantics is that the linalg.indexed_generic op produces (i.e.
allocates and fills) its return values.
Tensor values must be legalized by a buffer allocation pass before most
transformations can be applied. Such legalization moves tensor return values
into output buffer operands and updates the region argument accordingly.
Transformations that create control-flow around linalg.indexed_generic
operations are not expected to mix with tensors because SSA values do not
escape naturally. Still, transformations and rewrites that take advantage of
tensor SSA values are expected to be useful and will be added in the near
future.
Subscribers: bmahjour, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72555