This patch closes issue tensorflow/mlir#272
We add a standalone iterator permutation transformation to Linalg.
This transformation composes a permutation map with the maps in the
"indexing_maps" attribute. It also permutes "iterator_types"
accordingly.
Change-Id: I7c1e693b8203aeecc595a7c012e738ca1100c857
Closestensorflow/mlir#307
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/307 from tetuante:issue272 f7908d58792f4111119721885e247045104f1131
PiperOrigin-RevId: 284824102
This patch closes issue tensorflow/mlir#271.
It adds an optional permutation map to declarative tiling transformations.
The map is expressed as a list of integers.
Closestensorflow/mlir#288
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/288 from tetuante:issue271 2df2938d6a1f01b3bc404ded08dea2dd1e10b588
PiperOrigin-RevId: 284064151
This CL uses the now standard std.subview in linalg.
Two shortcuts are currently taken to allow this port:
1. the type resulting from a view is currently degraded to fully dynamic to pass the SubViewOp verifier.
2. indexing into SubViewOp may access out of bounds since lowering to LLVM does not currently enforce it by construction.
These will be fixed in subsequent commits after discussions.
PiperOrigin-RevId: 280250129
This operation is a companion operation to the std.view operation added as proposed in "Updates to the MLIR MemRefType" RFC.
PiperOrigin-RevId: 279766410
This will be used to specify declarative Linalg transformations in a followup CL. In particular, the PatternRewrite mechanism does not allow folding and has its own way of tracking erasure.
PiperOrigin-RevId: 277149158
This CL creates a new Linalg promotion pass that operates on SubViewOp and decouples it from Linalg tiling. This is mostly moving code around.
PiperOrigin-RevId: 275329213
When the implementation of the strided memref [RFC](https://groups.google.com/a/tensorflow.org/forum/#!msg/mlir/MaL8m2nXuio/1scRqZa6AQAJ) landed, linalg started using this type instead of the now retired !linalg.view.
As static and partially static cases appear, the stride information needs to be maintained properly. In particular, the result type of the subview op was generally incorrect.
This CL fixes the issue by computing a return type that:
1. always has dynamic sizes, which is generally the only correct way to construct a subview in the absence of data padding and/or code versioning.
2. has the same strides as the base strided memref.
Point 1. above can be further refined but will needs further analysis and canonicalization to optimize the particular case where:
1. The base memref has static size along a given dimension.
2. The subview size can be statically derived (e.g. after canonicalization).
3. *And* the subview size is an even divisor of the base memref.
This 3rd constraint is well-known in the case of tiled layouts that don't assume implicit padding: the boundary tile may be only partial and has size given by `problem_size % tile_size`.
Tests are updated as appropriate.
PiperOrigin-RevId: 274578624
This CL finishes the implementation of the Linalg + Affine type unification of the [strided memref RFC](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
As a consequence, the !linalg.view type, linalg::DimOp, linalg::LoadOp and linalg::StoreOp can now disappear and Linalg can use standard types everywhere.
PiperOrigin-RevId: 272187165
This CL adds support for proper cloning of Linalg ops that have regions (i.e. the generic linalg op). This is used to properly implement tiling and fusion for such ops. Adequate tests are added.
PiperOrigin-RevId: 267027176
This interface will allow for providing hooks to interrop with operation folding. The first hook, 'shouldMaterializeInto', will allow for controlling which region to insert materialized constants into. The folder will generally materialize constants into the top-level isolated region, this allows for materializing into a lower level ancestor region if it is more profitable/correct.
PiperOrigin-RevId: 266702972
This change refactors and cleans up the implementation of the operation walk methods. After this refactoring is that the explicit template parameter for the operation type is no longer needed for the explicit op walks. For example:
op->walk<AffineForOp>([](AffineForOp op) { ... });
is now accomplished via:
op->walk([](AffineForOp op) { ... });
PiperOrigin-RevId: 266209552