Refactor the original code to rewrite a PadTensorOp into a
sequence of InitTensorOp, FillOp and InsertSliceOp without
vectorization by default. `GenericPadTensorOpVectorizationPattern`
provides a customized OptimizeCopyFn to vectorize the
copying step.
Reviewed By: silvas, nicolasvasilache, springerm
Differential Revision: https://reviews.llvm.org/D105293
* Split memref.dim into two operations: memref.dim and tensor.dim. Both ops have the same builder interface and op argument names, so that they can be used with templates in patterns that apply to both tensors and memrefs (e.g., some patterns in Linalg).
* Add constant materializer to TensorDialect (needed for folding in affine.apply etc.).
* Remove some MemRefDialect dependencies, make some explicit.
Differential Revision: https://reviews.llvm.org/D105165
Adapt the StructuredOp verifier to ensure all operands are either in the input or the output group. The change is possible after adding support for scalar input operands (https://reviews.llvm.org/D104220).
Differential Revision: https://reviews.llvm.org/D104783
The main goal of this commit is to remove the dependency of Standard dialect on the Tensor dialect.
* Rename SubTensorOp -> tensor.extract_slice, SubTensorInsertOp -> tensor.insert_slice.
* Some helper functions are (already) duplicated between the Tensor dialect and the MemRef dialect. To keep this commit smaller, this will be cleaned up in a separate commit.
* Additional dialect dependencies: Shape --> Tensor, Tensor --> Standard
* Remove dialect dependencies: Standard --> Tensor
* Move canonicalization test cases to correct dialect (Tensor/MemRef).
Note: This is a fixed version of https://reviews.llvm.org/D104499, which was reverted due to a missing update to two CMakeFile.txt.
Differential Revision: https://reviews.llvm.org/D104676
The main goal of this commit is to remove the dependency of Standard dialect on the Tensor dialect.
* Rename ops: SubTensorOp --> ExtractTensorOp, SubTensorInsertOp --> InsertTensorOp
* Some helper functions are (already) duplicated between the Tensor dialect and the MemRef dialect. To keep this commit smaller, this will be cleaned up in a separate commit.
* Additional dialect dependencies: Shape --> Tensor, Tensor --> Standard
* Remove dialect dependencies: Standard --> Tensor
* Move canonicalization test cases to correct dialect (Tensor/MemRef).
Differential Revision: https://reviews.llvm.org/D104499
Up to now all structured op operands are assumed to be shaped. The patch relaxes this assumption and allows scalar input operands. In contrast to shaped operands scalar operands are not indexed and directly forwarded to the body of the operation. As all other operands, scalar operands are associated to an indexing map that in case of a scalar or a 0D-operand has an empty range.
We will use scalar operands as a replacement for the capture mechanism. In contrast to captures, the approach ensures we can generate the function signature from the operand list and it prevents outdated capture values in case a transformation updates only the capture operand but not the hidden body of a named operation.
Removing captures and updating existing operations such as linalg.fill is left for a later patch.
The patch depends on https://reviews.llvm.org/D103891 and https://reviews.llvm.org/D103890.
Differential Revision: https://reviews.llvm.org/D104109
This is both more efficient and more ergonomic than going
through an std::string, e.g. when using llvm::utostr and
in string concat cases.
Unfortunately we can't just overload ::get(). This causes an
ambiguity because both twine and stringref implicitly convert
from std::string.
Differential Revision: https://reviews.llvm.org/D103754
Introduces a test pass that rewrites PadTensorOps with static shapes as a sequence of:
```
linalg.init_tensor // to create output
linalg.fill // to initialize with padding value
linalg.generic // to copy the original contents to the padded tensor
```
The pass can be triggered with:
- `--test-linalg-transform-patterns="test-transform-pad-tensor"`
Differential Revision: https://reviews.llvm.org/D102804
Replace the uses of deprecated Structured Op Interface methods in TestLinalgElementwiseFusion.cpp, TestLinalgFusionTransforms.cpp, and Transforms.cpp. The patch is based on https://reviews.llvm.org/D103394.
Differential Revision: https://reviews.llvm.org/D103528
Break up the dependency between SCF ops and substituteMin helper and make a
more generic version of AffineMinSCFCanonicalization. This reduce dependencies
between linalg and SCF and will allow the logic to be used with other kind of
ops. (Like ID ops).
Differential Revision: https://reviews.llvm.org/D100321
The patch extends the vectorization pass to lower linalg index operations to vector code. It allocates constant 1d vectors that enumerate the indexes along the iteration dimensions and broadcasts/transposes these 1d vectors to the iteration space.
Differential Revision: https://reviews.llvm.org/D100373
Instead of interchanging loops during the loop lowering this pass performs the interchange by permuting the indexing maps. It also updates the iterator types and the index accesses in the body of the operation.
Differential Revision: https://reviews.llvm.org/D100627
The patch updates the tiling pass to add the tile offsets to the indices returned by the linalg operations.
Differential Revision: https://reviews.llvm.org/D100379
The `linalg.index` operation provides access to the iteration indexes of immediately enclosing linalg operations. It takes a dimension `dim` attribute and returns the iteration index in the given dimension. Having `linalg.index` allows us to unify `linalg.generic` and `linalg.indexed_generic` and also enables index access in named operations.
Differential Revision: https://reviews.llvm.org/D100292
To match an interface or trait, users currently have to use the `MatchAny` tag. This tag can be quite problematic for compile time for things like the canonicalizer, as the `MatchAny` patterns may get applied to *every* operation. This revision adds better support by bucketing interface/trait patterns based on which registered operations have them registered. This means that moving forward we will only attempt to match these patterns to operations that have this interface registered. Two simplify defining patterns that match traits and interfaces, two new utility classes have been added: OpTraitRewritePattern and OpInterfaceRewritePattern.
Differential Revision: https://reviews.llvm.org/D98986
This nicely aligns the naming with RewritePatternSet. This type isn't
as widely used, but we keep a using declaration in to help with
downstream consumption of this change.
Differential Revision: https://reviews.llvm.org/D99131
Return the vectorization results using a vector passed by reference instead of returning them embedded in a structure.
Differential Revision: https://reviews.llvm.org/D98182
This revision fixes the fact that the padding transformation did not have enough information to set the proper type for the padding value.
Additionally, the verifier for Yield in the presence of PadTensorOp is fixed to properly report incorrect number of results or operands. Previously, the error would be silently ignored which made the core issue difficult to debug.
Differential Revision: https://reviews.llvm.org/D96264
This revision takes advantage of recent extensions to vectorization to refactor contraction detection into a bona fide Linalg interface.
The mlit-linalg-ods-gen parser is extended to support adding such interfaces.
The detection that was originally enabling vectorization is refactored to serve as both a test on a generic LinalgOp as well as to verify ops that declare to conform to that interface.
This is plugged through Linalg transforms and strategies but it quickly becomes evident that the complexity and rigidity of the C++ class based templating does not pay for itself.
Therefore, this revision changes the API for vectorization patterns to get rid of templates as much as possible.
Variadic templates are relegated to the internals of LinalgTransformationFilter as much as possible and away from the user-facing APIs.
It is expected other patterns / transformations will follow the same path and drop as much C++ templating as possible from the class definition.
Differential revision: https://reviews.llvm.org/D95973
This revision creates a build method of PadTensorOp which can be mapped to
SimplePad op. The verifier is updated to accept a static custom result type,
which has the same semantic as SimplePadOp.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D95555
This revision adds a layer of SFINAE to the composable codegen strategy so it does
not have to require statically defined ops but instead can also be used with OpInterfaces, Operation* and an op name string.
A linalg.matmul_i8_i8_i32 is added to the .tc spec to demonstrate how all this works end to end.
Differential Revision: https://reviews.llvm.org/D95600
This revision starts evolving the APIs to manipulate ops with offsets, sizes and operands towards a ValueOrAttr abstraction that is already used in folding under the name OpFoldResult.
The objective, in the future, is to allow such manipulations all the way to the level of ODS to avoid all the genuflexions involved in distinguishing between values and attributes for generic constant foldings.
Once this evolution is accepted, the next step will be a mechanical OpFoldResult -> ValueOrAttr.
Differential Revision: https://reviews.llvm.org/D95310
This revision allows the base Linalg tiling pattern to optionally require padding to
a constant bounding shape.
When requested, a simple analysis is performed, similar to buffer promotion.
A temporary `linalg.simple_pad` op is added to model padding for the purpose of
connecting the dots. This will be replaced by a more fleshed out `linalg.pad_tensor`
op when it is available.
In the meantime, this temporary op serves the purpose of exhibiting the necessary
properties required from a more fleshed out pad op, to compose with transformations
properly.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D95149
representing dependence from producer result to consumer.
With Linalg on tensors the dependence between operations can be from
the result of the producer to the consumer. This change just does a
NFC refactoring of the LinalgDependenceGraphElem to allow representing
both OpResult and OpOperand*.
Differential Revision: https://reviews.llvm.org/D95208
This revision uniformizes fusion APIs to allow passing OpOperand, OpResult and adds a finer level of control fusion.
Differential Revision: https://reviews.llvm.org/D94493
This revision drops init_tensor arguments from Linalg on tensors and instead uniformizes the output buffers and output tensors to be consistent.
This significantly simplifies the usage of Linalg on tensors and is a stepping stone for
its evolution towards a mixed tensor and shape abstraction discussed in https://llvm.discourse.group/t/linalg-and-shapes/2421/19.
Differential Revision: https://reviews.llvm.org/D93469
Given that OpState already implicit converts to Operator*, this seems reasonable.
The alternative would be to add more functions to OpState which forward to Operation.
Reviewed By: rriddle, ftynse
Differential Revision: https://reviews.llvm.org/D92266
Enhance the tile+fuse logic to allow fusing a sequence of operations.
Make sure the value used to obtain tile shape is a
SubViewOp/SubTensorOp. Current logic used to get the bounds of loop
depends on the use of `getOrCreateRange` method on `SubViewOp` and
`SubTensorOp`. Make sure that the value/dim used to compute the range
is from such ops. This fix is a reasonable WAR, but a btter fix would
be to make `getOrCreateRange` method be a method of `ViewInterface`.
Differential Revision: https://reviews.llvm.org/D90991