* Split memref.dim into two operations: memref.dim and tensor.dim. Both ops have the same builder interface and op argument names, so that they can be used with templates in patterns that apply to both tensors and memrefs (e.g., some patterns in Linalg).
* Add constant materializer to TensorDialect (needed for folding in affine.apply etc.).
* Remove some MemRefDialect dependencies, make some explicit.
Differential Revision: https://reviews.llvm.org/D105165
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127
This updates the codebase to pass the context when creating an instance of
OwningRewritePatternList, and starts removing extraneous MLIRContext
parameters. There are many many more to be removed.
Differential Revision: https://reviews.llvm.org/D99028
Due to how the conversion infra works, the "clone" call that this
pattern was using required all the cloned ops to be immediately
legalized as part of this dialect conversion invocation.
That was previously working due to a couple factors:
- In the test case, there was scf.if, which we happen to mark as legal
as part of marking the entire SCF dialect as legal for the scf.parallel
we generate here.
- Originally, this test case had std.extract_element in the body, which
we happened to have a pattern for in this pass. After I migrated that to
`tensor.extract` (which removed the tensor.extract bufferization from
here), I hacked this up to use `std.dim` which we still have patterns
for in this pass.
This patch updates the test case to use a truly opaque op `test.source`
that properly stresses this aspect of the pattern.
(this also removes a stray dependency on the `tensor` dialect that I
must have left behind as part of my hacking this pass up when migrating
to `tensor.extract`)
Differential Revision: https://reviews.llvm.org/D93262
This reverts commit 0d48d265db.
This reapplies the following commit, with a fix for CAPI/ir.c:
[mlir] Start splitting the `tensor` dialect out of `std`.
This starts by moving `std.extract_element` to `tensor.extract` (this
mirrors the naming of `vector.extract`).
Curiously, `std.extract_element` supposedly works on vectors as well,
and this patch removes that functionality. I would tend to do that in
separate patch, but I couldn't find any downstream users relying on
this, and the fact that we have `vector.extract` made it seem safe
enough to lump in here.
This also sets up the `tensor` dialect as a dependency of the `std`
dialect, as some ops that currently live in `std` depend on
`tensor.extract` via their canonicalization patterns.
Part of RFC: https://llvm.discourse.group/t/rfc-split-the-tensor-dialect-from-std/2347/2
Differential Revision: https://reviews.llvm.org/D92991
This starts by moving `std.extract_element` to `tensor.extract` (this
mirrors the naming of `vector.extract`).
Curiously, `std.extract_element` supposedly works on vectors as well,
and this patch removes that functionality. I would tend to do that in
separate patch, but I couldn't find any downstream users relying on
this, and the fact that we have `vector.extract` made it seem safe
enough to lump in here.
This also sets up the `tensor` dialect as a dependency of the `std`
dialect, as some ops that currently live in `std` depend on
`tensor.extract` via their canonicalization patterns.
Part of RFC: https://llvm.discourse.group/t/rfc-split-the-tensor-dialect-from-std/2347/2
Differential Revision: https://reviews.llvm.org/D92991
- Address TODO in scf-bufferize: the argument materialization issue is
now fixed and the code is now in Transforms/Bufferize.cpp
- Tighten up finalizing-bufferize to avoid creating invalid IR when
operand types potentially change
- Tidy up the testing of func-bufferize, and move appropriate tests
to a new finalizing-bufferize.mlir
- The new stricter checking in finalizing-bufferize revealed that we
needed a DimOp conversion pattern (found when integrating into npcomp).
Previously, the converion infrastructure was blindly changing the
operand type during finalization, which happened to work due to
DimOp's tensor/memref polymorphism, but is generally not encouraged
(the new pattern is the way to tell the conversion infrastructure that
it is legal to change that type).
This class represents a rewrite pattern list that has been frozen, and thus immutable. This replaces the uses of OwningRewritePatternList in pattern driver related API, such as dialect conversion. When PDL becomes more prevalent, this API will allow for optimizing a set of patterns once without the need to do this per run of a pass.
Differential Revision: https://reviews.llvm.org/D89104
It's unfortunate that this requires adding a dependency on scf dialect
to std bufferization (and hence all of std transforms). This is a bit
perilous. We might want a lib/Transforms/Bufferize/ with a separate
bufferization library per dialect?
Differential Revision: https://reviews.llvm.org/D89667
The opposite of tensor_to_memref is tensor_load.
- Add some basic tensor_load/tensor_to_memref folding.
- Add source/target materializations to BufferizeTypeConverter.
- Add an example std bufferization pattern/pass that shows how the
materialiations work together (more std bufferization patterns to come
in subsequent commits).
- In coming commits, I'll document how to write composable
bufferization passes/patterns and update the other in-tree
bufferization passes to match this convention. The populate* functions
will of course continue to be exposed for power users.
The naming on tensor_load/tensor_to_memref and their pretty forms are
not very intuitive. I'm open to any suggestions here. One key
observation is that the memref type must always be the one specified in
the pretty form, since the tensor type can be inferred from the memref
type but not vice-versa.
With this, I've been able to replace all my custom bufferization type
converters in npcomp with BufferizeTypeConverter!
Part of the plan discussed in:
https://llvm.discourse.group/t/what-is-the-strategy-for-tensor-memref-conversion-bufferization/1938/17
Differential Revision: https://reviews.llvm.org/D89437