This class represents a generic abstraction over the different ways to represent a range of Values: ArrayRef<Value *>, operand_range, result_range. This class will allow for removing the many instances of explicit SmallVector<Value *, N> construction. It has the same memory cost as ArrayRef, and only suffers cost from indexing(if+elsing the different underlying representations).
This change only updates a few of the existing usages, with more to be changed in followups; e.g. 'build' API.
PiperOrigin-RevId: 284307996
I found that when running crash reproducers, the elided elementsattr's
would prevent parsing the IR repro. I found myself manually going and
replacing the "..." with some valid IR.
With this change, we now print elided attrs as `opaque<"", "0xDEADBEEF">`
to clearly delineate them as being elided while still being parseable.
PiperOrigin-RevId: 283781806
This interface provides more fine-grained hooks into the AsmPrinter than the dialect interface, allowing for operations to define the asm name to use for results directly on the operations themselves. The hook is also expanded to enable defining named result "groups". Get a special name to use when printing the results of this operation.
The given callback is invoked with a specific result value that starts a
result "pack", and the name to give this result pack. To signal that a
result pack should use the default naming scheme, a None can be passed
in instead of the name.
For example, if you have an operation that has four results and you want
to split these into three distinct groups you could do the following:
setNameFn(getResult(0), "first_result");
setNameFn(getResult(1), "middle_results");
setNameFn(getResult(3), ""); // use the default numbering.
This would print the operation as follows:
%first_result, %middle_results:2, %0 = "my.op" ...
PiperOrigin-RevId: 281546873
Expand local scope printing to skip printing aliases as aliases are printed out at the top of a module and may not be part of the output generated by local scope print.
PiperOrigin-RevId: 280278617
This causes the AsmPrinter to use a local value numbering when printing the IR, allowing for the printer to be used safely in a local context, e.g. to ensure thread-safety when printing the IR. This means that the IR printing instrumentation can also be used during multi-threading when module-scope is disabled. Operation::dump and DiagnosticArgument(Operation*) are also updated to always print local scope, as this is the most common use case when debugging.
PiperOrigin-RevId: 279988203
This change allows for adding additional nested references to a SymbolRefAttr to allow for further resolving a symbol if that symbol also defines a SymbolTable. If a referenced symbol also defines a symbol table, a nested reference can be used to refer to a symbol within that table. Nested references are printed after the main reference in the following form:
symbol-ref-attribute ::= symbol-ref-id (`::` symbol-ref-id)*
Example:
module @reference {
func @nested_reference()
}
my_reference_op @reference::@nested_reference
Given that SymbolRefAttr is now more general, the existing functionality centered around a single reference is moved to a derived class FlatSymbolRefAttr. Followup commits will add support to lookups, rauw, etc. for scoped references.
PiperOrigin-RevId: 279860501
Many operations with regions add an additional 'attributes' prefix when printing the attribute dictionary to differentiate it from the region body. This leads to duplicated logic for detecting when to actually print the attribute dictionary.
PiperOrigin-RevId: 278747681
These classes are functionally similar to the OpAsmParser/Printer classes and provide hooks for parsing attributes/tokens/types/etc. This change merely sets up the base infrastructure and updates the parser hooks, followups will add hooks as needed to simplify existing handrolled dialect parsers.
This has various different benefits:
*) Attribute/Type parsing is much simpler to define.
*) Dialect attributes/types that contain other attributes/types can now use aliases.
*) It provides a 'spec' with which we may use in the future to auto-generate parsers/printers.
*) Error messages emitted by attribute/type parsers can provide character exact locations rather than "beginning of the string"
PiperOrigin-RevId: 278005322
'_' is used frequently enough as the separator of words in symbols.
We should allow it in dialect symbols when considering pretty printing.
Also updated LangRef.md regarding pretty form.
PiperOrigin-RevId: 275312494
The value defined in a loop was not being used and the function producing it
re-evaluated instead. Use the value to avoid both the warning and the
re-evaluation.
PiperOrigin-RevId: 274794459
The restriction that symbols can only have identifier names is arbitrary, and artificially limits the names that a symbol may have. This change adds support for parsing and printing symbols that don't fit in the 'bare-identifier' grammar by printing the reference in quotes, e.g. @"0_my_reference" can now be used as a symbol name.
PiperOrigin-RevId: 273644768
Some modules may have extremely large ElementsAttrs, which makes debugging involving IR dumping extremely slow and painful. This change adds a flag that will elide ElementsAttrs with a "large"(as defined by the user) number of elements by printing "..." instead of the element data.
PiperOrigin-RevId: 273413100
This allows for controlling the behavior of the AsmPrinter programmatically, instead of relying exclusively on cl::opt flags. This will also allow for more fine-tuned control of printing behavior per callsite, instead of being applied globally.
PiperOrigin-RevId: 273368361
See RFC: https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/xE2IzfhE3Wg.
Opaque location stores two pointers, one of them points to some data structure that is external to MLIR, and the other one is unique for each type and represents type id of that data structure. OpaqueLoc also stores an optional location that can be used if the first one is not suitable.
OpaqueLoc is managed similar to FileLineColLoc. It is passed around by MLIR transformations and can be used in compound locations like CallSiteLoc.
PiperOrigin-RevId: 273266510
This is more consistent with other dump methods. Otherwise successive Value dumps are concatenated in same line, hurting readability.
PiperOrigin-RevId: 271669846
Tweak to the pretty type parser to recognize that `->` is a special token that
shouldn't be split into two characters. This change allows dialect
types to wrap function types as in `!my.ptr_type<(i32) -> i32>`.
Closestensorflow/mlir#105
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/105 from schweitzpgi:parse-arrow 8b2d768053f419daae5a1a864121a44c4319acbe
PiperOrigin-RevId: 265986240
This will allow for adding more hooks for controlling parser behavior without bloating Dialect in the common case. This cl also adds iteration support to the DialectInterfaceCollection.
PiperOrigin-RevId: 264627846
tensorflow/mlir#58 fixed and exercised
verification of load/store ops using empty affine maps. Unfortunately,
it didn't exercise the creation of them. This PR addresses that aspect.
It removes the assumption of AffineMap having at least one result and
stores a pointer to MLIRContext as member of AffineMap.
* Add empty map support to affine.store + test
* Move MLIRContext to AffineMapStorage
Closestensorflow/mlir#74
PiperOrigin-RevId: 264416260
The current implementation only returns one element for the splat case, which often comes as a surprise; leading to subtle/confusing bugs. The new behavior will include an iterate over the full range of elements, as defined by the shaped type, by providing the splat value for each iterator index.
PiperOrigin-RevId: 262756780
There are currently several different terms used to refer to a parent IR unit in 'get' methods: getParent/getEnclosing/getContaining. This cl standardizes all of these methods to use 'getParent*'.
PiperOrigin-RevId: 262680287
MLIR does not have support for parsing special floating point values such as
infinities and NaNs. If programmatically constructed, these values are printed
as NaN and (+-)Inf and cannot be parsed back. Add parser support for
hexadecimal literals in float attributes, following LLVM IR. The literal
corresponds to the in-memory representation of the floating point value.
IEEE 754 defines a range of possible values for NaNs, storing the bitwise
representation allows MLIR to properly roundtrip NaNs with different bit values
of significands.
The initial version of this commit was missing support for float literals that
used to be printed in decimal notation as a fallback, but ended up being
printed in hexadecimal format which became the fallback for special values.
The decimal fallback behavior was not exercised by tests. It is currently
reinstated and tested by the newly added test @f32_potential_precision_loss in
parser.mlir.
PiperOrigin-RevId: 260790900
MLIR does not have support for parsing special floating point values such as
infinities and NaNs. If programmatically constructed, these values are printed
as NaN and (+-)Inf and cannot be parsed back. Add parser support for
hexadecimal literals in float attributes, following LLVM IR. The literal
corresponds to the in-memory representation of the floating point value.
IEEE 754 defines a range of possible values for NaNs, storing the bitwise
representation allows MLIR to properly roundtrip NaNs with different bit values
of significands.
PiperOrigin-RevId: 260018802
We already parse boolean "true"/"false" as ElementsAttr elements.
This CL makes it round-trippable that we are printing the same way.
PiperOrigin-RevId: 258784962
This allows for the attribute to hold symbolic references to other operations than FuncOp. This also allows for removing the dependence on FuncOp from the base Builder.
PiperOrigin-RevId: 257650017
This changes the top-level module parser to handle the case where the top-level module is defined with the module operation syntax, i.e:
module ... {
}
The printer is also updated to always print the top-level module in this form. This allows for cleanly round-tripping the location and attributes of the top-level module.
PiperOrigin-RevId: 257492069
The ModulePrinter prints the newline now for children of the top-level module. This also fixes the location printing for functions as the location used to be printed on a different line.
PiperOrigin-RevId: 257447633
This was an arbitrary restriction caused by the way that modules were printed. Now that that has been fixed, this restriction can be removed.
PiperOrigin-RevId: 257240329
Change the AsmPrinter to number values breadth-first so that values in adjacent regions can have the same name. This allows for ModuleOp to contain operations that produce results. This also standardizes the special name of region entry arguments to "arg[0-9+]" now that Functions are also operations.
PiperOrigin-RevId: 257225069
These methods assume that a function is a valid builtin top-level operation, and removing these methods allows for decoupling FuncOp and IR/. Utility "getParentOfType" methods have been added to Operation/OpState to allow for querying the first parent operation of a given type.
PiperOrigin-RevId: 257018913
This is an important step in allowing for the top-level of the IR to be extensible. FuncOp and ModuleOp contain all of the necessary functionality, while using the existing operation infrastructure. As an interim step, many of the usages of Function and Module, including the name, will remain the same. In the future, many of these will be relaxed to allow for many different types of top-level operations to co-exist.
PiperOrigin-RevId: 256427100
As with Functions, Module will soon become an operation, which are value-typed. This eases the transition from Module to ModuleOp. A new class, OwningModuleRef is provided to allow for owning a reference to a Module, and will auto-delete the held module on destruction.
PiperOrigin-RevId: 256196193
Move the data members out of Function and into a new impl storage class 'FunctionStorage'. This allows for Function to become value typed, which will greatly simplify the transition of Function to FuncOp(given that FuncOp is also value typed).
PiperOrigin-RevId: 255983022
Remove the ability to print an attribute without a type, but allow for attributes to elide the type under certain circumstances. This fixes a bug where attributes within ArrayAttr, and other collection attributes, would never print the type.
PiperOrigin-RevId: 255306974
The current syntax separates the name and value with ':', but ':' is already overloaded by several other things(e.g. trailing types). This makes the syntax difficult to parse in some situtations:
Old:
"foo: 10 : i32"
New:
"foo = 10 : i32"
PiperOrigin-RevId: 255097928
This is the standard syntax for types on operations, and is also already used by IntegerAttr and FloatAttr.
Example:
dense<5> : tensor<i32>
dense<[3]> : tensor<1xi32>
PiperOrigin-RevId: 255069157
The new operations affine.load and affine.store will take composed affine maps by construction.
These operations will eventually replace load and store operations currently used in affine regions and operated on by affine transformation and analysis passes.
PiperOrigin-RevId: 254754048
This will allow for locations to be used in the same contexts as attributes. Given that attributes are nullable types, the 'Location' class now represents a non-nullable wrapper around a 'LocationAttr'. This preserves the desired semantics we have for non-optional locations.
PiperOrigin-RevId: 254505278
MemRefs have the same notion of shape, rank, and fixed element type. This allows us to reuse utilities based on shape for memref.
All dyn_cast and isa calls for ShapedType have been checked and either modified to explicitly check for vector or tensor, or confirmed to not depend on the result being a vector or tensor.
Discussion in https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/cHLoyfGu8y8
--
PiperOrigin-RevId: 250945184
* There is no longer a need to explicitly remap function attrs.
- This removes a potentially expensive call from the destructor of Function.
- This will enable some interprocedural transformations to now run intraprocedurally.
- This wasn't scalable and forces dialect defined attributes to override
a virtual function.
* Replacing a function is now a trivial operation.
* This is a necessary first step to representing functions as operations.
--
PiperOrigin-RevId: 249510802
This is in preparation for making it also support/be a parent class of MemRefType. MemRefs have similar shape/rank/element semantics and it would be useful to be able to use these same utilities for them.
This CL should not change any semantics and only change variables, types, string literals, and comments. In follow-up CLs I will prepare all callers to handle MemRef types or remove their dependence on ShapedType.
Discussion/Rationale in https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/cHLoyfGu8y8
--
PiperOrigin-RevId: 248476449
`#` alias `=` attribute-value
This also allows for dialects to define aliases for attributes in the AsmPrinter. The printer supports two types of attribute aliases, 'direct' and 'kind'.
* Direct aliases are synonymous with the current support for type aliases, i.e. this maps an alias to a specific instance of an attribute.
// A direct alias ("foo_str") for the string attribute "foo".
#foo_str = "foo"
* Kind aliases generates unique names for all instances of a given attribute kind. The generated aliases are of the form: `alias[0-9]+`.
// A kind alias ("strattr") for all string attributes could generate.
#strattr0 = "foo"
#strattr1 = "bar"
...
#strattrN = "baz"
--
PiperOrigin-RevId: 246851916
The generic form of operations currently supports optional regions to be
located after the operation type. As we are going to add a type to each
region in a leading position in the region syntax, similarly to functions, it
becomes ambiguous to have regions immediately after the operation type. Put
regions between operands the optional list of successors in the generic
operation syntax and wrap them in parentheses. The effect on the exisitng IR
syntax is minimal since only three operations (`affine.for`, `affine.if` and
`gpu.kernel`) currently use regions.
--
PiperOrigin-RevId: 246787087
none-type ::= `none`
The `none` type is a unit type, i.e. a type with exactly one possible value, where its value does not have a defined dynamic representation.
--
PiperOrigin-RevId: 245599248
A unit attribute is an attribute that represents a value of `unit` type. The
`unit` type allows only one value forming a singleton set. This attribute value
is used to represent attributes that only have meaning from their existence.
One example of such an attribute could be the `swift.self` attribute. This attribute indicates that a function parameter is the self/context
parameter. It could be represented as a boolean attribute(true or false), but a
value of false doesn't really bring any value. The parameter either is the
self/context or it isn't.
```mlir {.mlir}
// A unit attribute defined with the `unit` value specifier.
func @verbose_form(i1 {unitAttr : unit})
// A unit attribute can also be defined without the `unit` value specifier.
func @simple_form(i1 {unitAttr})
```
--
PiperOrigin-RevId: 245254045
The per-layer format is now like:
!quant.uniform<i8<-8:7>:f32, 9.987200e-01:127>
and per-axis is:
!quant.uniform<i8:f32:1, {2.0e+2,0.99872:120}>
I used the following sed script to update the unit tests (invoked with commands like `sed -i -r -f fix_quant.sed $(find . -name '*.mlir')`).
---
# Per-layer
s|\!quant<"uniform\[([iu][0-9]+):([fb]+[0-9]+)\]\{([^\}]+)\}\s*">|!quant.uniform<\1:\2, \3>|g
s|\!quant<"uniform\[([iu][0-9]+)\(([^\)]+)\):([fb]+[0-9]+)\]\{([^\}]+)\}\s*">|!quant.uniform<\1<\2>:\3, \4>|g
# Per-axis
s|\!quant<"uniform\[([iu][0-9]+):([fb]+[0-9]+)(:[0-9]+)?\]\{([^\}]+)\}\s*">|!quant.uniform<\1:\2\3, {\4}>|g
s|\!quant<"uniform\[([iu][0-9]+)\(([^\)]+)\):([fb]+[0-9]+)(:[0-9]+)?\]\{([^\}]+)\}\s*">|!quant.uniform<\1<\2>:\3\4, {\5}>|g
---
I fixed up the one file of error cases manually.
Since this is a one time syntax fix, I am not persisting the script anywhere.
--
PiperOrigin-RevId: 244425331
other characters within the <>'s now that we can. This will allow quantized
types to use the pretty syntax (among others) after a few changes.
--
PiperOrigin-RevId: 243521268
making the IR dumps much nicer.
This is part 2/3 of the path to making dialect types more nice. Part 3/3 will
slightly generalize the set of characters allowed in pretty types and make it
more principled.
--
PiperOrigin-RevId: 242249955
have no standard ops for working with these yet, this is simply enough to
represent and round trip them in the printer and parser.
--
PiperOrigin-RevId: 241102728
Example:
%call:2 = call @multi_return() : () -> (f32, i32)
use(%calltensorflow/mlir#0, %calltensorflow/mlir#1)
This cl also adds parser support for uniquely named result values. This means that a test writer can now write something like:
%foo, %bar = call @multi_return() : () -> (f32, i32)
use(%foo, %bar)
Note: The printer will still print the collapsed form.
PiperOrigin-RevId: 240860058
Due to legacy reasons (ML/CFG function separation), regions in affine control
flow operations require contained blocks not to have terminators. This is
inconsistent with the notion of the block and may complicate code motion
between regions of affine control operations and other regions.
Introduce `affine.terminator`, a special terminator operation that must be used
to terminate blocks inside affine operations and transfers the control back to
he region enclosing the affine operation. For brevity and readability reasons,
allow `affine.for` and `affine.if` to omit the `affine.terminator` in their
regions when using custom printing and parsing format. The custom parser
injects the `affine.terminator` if it is missing so as to always have it
present in constructed operations.
Update transformations to account for the presence of terminator. In
particular, most code motion transformation between loops should leave the
terminator in place, and code motion between loops and non-affine blocks should
drop the terminator.
PiperOrigin-RevId: 240536998
tblgen be non-const. This requires introducing some const_cast's at the
moment, but those (and lots more stuff) will disappear in subsequent patches.
This significantly simplifies those patches because the various tblgen op emitters
get adjusted.
PiperOrigin-RevId: 239954566
This also eliminates some incorrect reinterpret_cast logic working around it, and numerous const-incorrect issues (like block argument iteration).
PiperOrigin-RevId: 239712029
Dialect attributes are defined as:
dialect-namespace `.` attr-name `:` attribute-value
Dialects can override any of the following hooks to verify the validity of a given attribute:
* verifyFunctionAttribute
* verifyFunctionArgAttribute
* verifyInstructionAttribute
PiperOrigin-RevId: 236507970
Associates opaque constants with a particular dialect. Adds general mechanism to register dialect-specific hooks defined in external components. Adds hooks to decode opaque tensor constant and extract an element of an opaque tensor constant.
This CL does not change the existing mechanism for registering constant folding hook yet. One thing at a time.
PiperOrigin-RevId: 233544757
Existing type syntax contains the following productions:
function-type ::= type-list-parens `->` type-list
type-list ::= type | type-list-parens
type ::= <..> | function-type
Due to these rules, when the parser sees `->` followed by `(`, it cannot
disambiguate if `(` starts a parenthesized list of function result types, or a
parenthesized list of operands of another function type, returned from the
current function. We would need an unknown amount of lookahead to try to find
the `->` at the right level of function nesting to differentiate between type
lists and singular function types.
Instead, require the result type of the function that is a function type itself
to be always parenthesized, at the syntax level. Update the spec and the
parser to correspond to the production rule names used in the spec (although it
would have worked without modifications). Fix the function type parsing bug in
the process, as it used to accept the non-parenthesized list of types for
arguments, disallowed by the spec.
PiperOrigin-RevId: 232528361
In optional attribute dictionary used, among others, in the generic form of the
ops, attribute types for integers and floats are omitted. This could lead to
inconsistencies when round-tripping the IR, in particular the attributes are
created with incorrect types after parsing (integers default to i64, floats
default to f64). Provide API to emit a trailing type after the attribute for
integers and floats. Use it while printing the optional attribute dictionary.
Omitting types for i64 and f64 is a pragmatic decision that minimizes changes
in tests. We may want to reconsider in the future and always print types of
attributes in the generic form.
PiperOrigin-RevId: 232480116
The generic form may be more desirable even when there is a custom form
specified so add option to enable emitting it. This also exposes a current bug
when round tripping constant with function attribute.
PiperOrigin-RevId: 232350712
Use `-mlir-pretty-debuginfo` if the user wants line breaks between different callsite lines.
The print results before and after this CL are shown in the tests.
PiperOrigin-RevId: 231013812
Example inline notation:
trailing-location ::= 'loc' '(' location ')'
// FileLineCol Location.
%1 = "foo"() : () -> i1 loc("mysource.cc":10:8)
// Name Location
return loc("foo")
// CallSite Location
return loc(callsite("foo" at "mysource.cc":19:9))
// Fused Location
/// Without metadata
func @inline_notation() loc(fused["foo", "mysource.cc":10:8])
/// With metadata
return loc(fused<"myPass">["foo", "foo2"])
// Unknown location.
return loc(unknown)
Locations are currently only printed with inline notation at the line of each instruction. Further work is needed to allow for reference notation, e.g:
...
return loc 1
}
...
loc 1 = "source.cc":10:1
PiperOrigin-RevId: 230587621
This CL just changes various docs and comments to use the term "generic" and
"custom" when mentioning assembly forms. To be consist, several methods are
also renamed:
* FunctionParser::parseVerboseOperation() -> parseGenericOperation()
* ModuleState::hasShorthandForm() -> hasCustomForm()
* OpAsmPrinter::printDefaultOp() -> printGenericOp()
PiperOrigin-RevId: 230568819
- print multiplication by -1 as unary negate; expressions like s0 * -1, d0 * -1
+ d1 will now appear as -s0, -d0 + d1 resp.
- a minor cleanup while on printAffineExprInternal
PiperOrigin-RevId: 230222151
Originally, terminators were special kinds of operation and could not be
extended by dialects. Only builtin terminators were supported and they had
custom parsers and printers. Currently, "terminator" is a property of an
operation, making it possible for dialects to define custom terminators.
However, verbose forms of operation syntax were not designed to support
terminators that may have a list of successors (each successor contains a block
name and an optional operand list). Calling printDefaultOp on a terminator
drops all successor information. Dialects are thus required to provide custom
parsers and printers for their terminators.
Introduce the syntax for the list of successors in the verbose from of the
operation. Add support for printing and parsing verbose operations with
successors.
Note that this does not yet add support for unregistered terminators since
"terminator" is a property stored in AsbtractOperation and therefore is only
available for registered operations that have an instance of AbstractOperation.
Add tests for verbose parsing. It is currently impossible to test round-trip
for verbose terminators because none of the known dialects use verbose syntax
for printing terminators by default, however the printer was exercised on the
LLVM IR dialect prototype.
PiperOrigin-RevId: 228566453
- refactor toAffineFromEq and the code surrounding it; refactor code into
FlatAffineConstraints::getSliceBounds
- add FlatAffineConstraints methods to detect identifiers as mod's and div's of other
identifiers
- add FlatAffineConstraints::getConstantLower/UpperBound
- Address b/122118218 (don't assert on invalid fusion depths cmdline flags -
instead, don't do anything; change cmdline flags
src-loop-depth -> fusion-src-loop-depth
- AffineExpr/Map print method update: don't fail on null instances (since we have
a wrapper around a pointer, it's avoidable); rationale: dump/print methods should
never fail if possible.
- Update memref-dataflow-opt to add an optimization to avoid a unnecessary call to
IsRangeOneToOne when it's trivially going to be true.
- Add additional test cases to exercise the new support
- update a few existing test cases since the maps are now generated uniformly with
all destination loop operands appearing for the backward slice
- Fix projectOut - fix wrong range for getBestElimCandidate.
- Fix for getConstantBoundOnDimSize() - didn't show up in any test cases since
we didn't have any non-hyperrectangular ones.
PiperOrigin-RevId: 228265152
Dialect specific types are registered similarly to operations, i.e. registerType<...> within the dialect. Unlike operations, there is no notion of a "verbose" type, that is *all* types must be registered to a dialect. Casting support(isa/dyn_cast/etc.) is implemented by reserving a range of type kinds in the top level Type class as opposed to string comparison like operations.
To support derived types a few hooks need to be implemented:
In the concrete type class:
- static char typeID;
* A unique identifier for the type used during registration.
In the Dialect:
- typeParseHook and typePrintHook must be implemented to provide parser support.
The syntax for dialect extended types is as follows:
dialect-type: '!' dialect-namespace '<' '"' type-specific-data '"' '>'
The 'type-specific-data' is information used to identify different types within the dialect, e.g:
- !tf<"variant"> // Tensor Flow Variant Type
- !tf<"string"> // Tensor Flow String Type
TensorFlow/TensorFlowControl types are now implemented as dialect specific types as a proof
of concept.
PiperOrigin-RevId: 227580052
The entire compiler now looks at structural properties of the function (e.g.
does it have one block, does it contain an if/for stmt, etc) so the only thing
holding up this difference is round tripping through the parser/printer syntax.
Removing this shrinks the compile by ~140LOC.
This is step 31/n towards merging instructions and statements. The last step
is updating the docs, which I will do as a separate patch in order to split it
from this mostly mechanical patch.
PiperOrigin-RevId: 227540453
function pass, and eliminating the need to copy over code and do
interprocedural updates. While here, also improve it to make fewer empty
blocks, and rename it to "LowerIfAndFor" since that is what it does. This is
a net reduction of ~170 lines of code.
As drive-bys, change the splitBlock method to *not* insert an unconditional
branch, since that behavior is annoying for all clients. Also improve the
AsmPrinter to not crash when a block is referenced that isn't linked into a
function.
PiperOrigin-RevId: 227308856
Function::walk functionality into f->walkInsts/Ops which allows visiting all
instructions, not just ops. Eliminate Function::getBody() and
Function::getReturn() helpers which crash in CFG functions, and were only kept
around as a bridge.
This is step 25/n towards merging instructions and statements.
PiperOrigin-RevId: 227243966
printing the entry block in a CFG function's argument line. Since I'm touching
all of the testcases anyway, change the argument list from printing as
"%arg : type" to "%arg: type" which is more consistent with bb arguments.
In addition to being more consistent, this is a much nicer look for cfg functions.
PiperOrigin-RevId: 227240069
consistent and moving the using declarations over. Hopefully this is the last
truly massive patch in this refactoring.
This is step 21/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227178245
The last major renaming is Statement -> Instruction, which is why Statement and
Stmt still appears in various places.
This is step 19/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227163082
by about 100 LOC), without changing any existing behavior.
This is step 20/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227155000