This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This greatly simplifies a large portion of the underlying infrastructure, allows for lookups of singleton classes to be much more efficient and always thread-safe(no locking). As a result of this, the dialect symbol registry has been removed as it is no longer necessary.
For users broken by this change, an alert was sent out(https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types) that helps prevent a majority of the breakage surface area. All that should be necessary, if the advice in that alert was followed, is removing the kind passed to the ::get methods.
Differential Revision: https://reviews.llvm.org/D86121
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
mlir::registerDialect<mlir::standalone::StandaloneDialect>();
mlir::registerDialect<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
This revision removes all of the lingering usages of Type::getKind. A consequence of this is that FloatType is now split into 4 derived types that represent each of the possible float types(BFloat16Type, Float16Type, Float32Type, and Float64Type). Other than this split, this revision is NFC.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D85566
This reverts commit 9f24640b7e.
We hit some dead-locks on thread exit in some configurations: TLS exit handler is taking a lock.
Temporarily reverting this change as we're debugging what is going on.
This revision refactors the default definition of the attribute and type `classof` methods to use the TypeID of the concrete class instead of invoking the `kindof` method. The TypeID is already used as part of uniquing, and this allows for removing the need for users to define any of the type casting utilities themselves.
Differential Revision: https://reviews.llvm.org/D85356
This class allows for defining thread local objects that have a set non-static lifetime. This internals of the cache use a static thread_local map between the various different non-static objects and the desired value type. When a non-static object destructs, it simply nulls out the entry in the static map. This will leave an entry in the map, but erase any of the data for the associated value. The current use cases for this are in the MLIRContext, meaning that the number of items in the static map is ~1-2 which aren't particularly costly enough to warrant the complexity of pruning. If a use case arises that requires pruning of the map, the functionality can be added.
This is especially useful in the context of MLIR for implementing thread-local caching of context level objects that would otherwise have very high lock contention. This revision adds a thread local cache in the MLIRContext for attributes, identifiers, and types to reduce some of the locking burden. This led to a speedup of several hundred miliseconds when compiling a conversion pass on a very large mlir module(>300K operations).
Differential Revision: https://reviews.llvm.org/D82597
This allows for bucketing the different possible storage types, with each bucket having its own allocator/mutex/instance map. This greatly reduces the amount of lock contention when multi-threading is enabled. On some non-trivial .mlir modules (>300K operations), this led to a compile time decrease of a single conversion pass by around half a second(>25%).
Differential Revision: https://reviews.llvm.org/D82596
This patch moves the registration to a method in the MLIRContext: getOrCreateDialect<ConcreteDialect>()
This method requires dialect to provide a static getDialectNamespace()
and store a TypeID on the Dialect itself, which allows to lazyily
create a dialect when not yet loaded in the context.
As a side effect, it means that duplicated registration of the same
dialect is not an issue anymore.
To limit the boilerplate, TableGen dialect generation is modified to
emit the constructor entirely and invoke separately a "init()" method
that the user implements.
Differential Revision: https://reviews.llvm.org/D85495
Moving forward dialects should only be registered in a thread safe context. This matches the existing usage we have today, but it allows for removing quite a bit of expensive locking from the context.
This led to ~.5 a second compile time improvement when running one conversion pass on a very large .mlir file(hundreds of thousands of operations).
Differential Revision: https://reviews.llvm.org/D82595
This revisions add mechanisms to Attribute/Type for attaching traits and interfaces. The mechanisms are modeled 1-1 after those for operations to keep the system consistent. AttrBase and TypeBase now accepts a trailing list of `Trait` types that will be attached to the object. These traits should inherit from AttributeTrait::TraitBase and TypeTrait::TraitBase respectively as necessary. A followup commit will refactor the interface gen mechanisms in ODS to support Attribute/Type interface generation and add tests for the mechanisms.
Differential Revision: https://reviews.llvm.org/D81883
This revision adds a new support header, InterfaceSupport, to contain various generic bits of functionality for implementing "Interfaces". Interfaces embody a mechanism for attaching concept-based polymorphism to a type system. With this refactoring a new InterfaceMap type is added to allow for efficient interface lookups without going through an indirect call. This should provide a decent performance speedup without changing the size of AbstractOperation.
In a future revision, this functionality will also be used to bring Interface like functionality to Attributes and Types.
Differential Revision: https://reviews.llvm.org/D81882
This simplifies a lot of handling of BoolAttr/IntegerAttr. For example, a lot of places currently have to handle both IntegerAttr and BoolAttr. In other places, a decision is made to pick one which can lead to surprising results for users. For example, DenseElementsAttr currently uses BoolAttr for i1 even if the user initialized it with an Array of i1 IntegerAttrs.
Differential Revision: https://reviews.llvm.org/D81047
This changes will catch error where C++ op are used without being
registered, either through creation with the OpBuilder or when trying to
cast to the C++ op.
Differential Revision: https://reviews.llvm.org/D80651
This is a wrapper around vector of NamedAttributes that keeps track of whether sorted and does some minimal effort to remain sorted (doing more, e.g., appending attributes in sorted order, could be done in follow up). It contains whether sorted and if a DictionaryAttr is queried, it caches the returned DictionaryAttr along with whether sorted.
Change MutableDictionaryAttr to always return a non-null Attribute even when empty (reserve null cases for errors). To this end change the getter to take a context as input so that the empty DictionaryAttr could be queried. Also create one instance of the empty dictionary attribute that could be reused without needing to lock context etc.
Update infer type op interface to use DictionaryAttr and use NamedAttrList to avoid incurring multiple conversion costs.
Fix bug in sorting helper function.
Differential Revision: https://reviews.llvm.org/D79463
This is useful for several reasons:
* In some situations the user can guarantee that thread-safety isn't necessary and don't want to pay the cost of synchronization, e.g., when parsing a very large module.
* For things like logging threading is not desirable as the output is not guaranteed to be in stable order.
This flag also subsumes the pass manager flag for multi-threading.
Differential Revision: https://reviews.llvm.org/D79266
Summary:
Implemented a DenseStringsElements attr for handling arrays / tensors of strings. This includes the
necessary logic for parsing and printing the attribute from MLIR's text format.
To store the attribute we perform a single allocation that includes all wrapped string data tightly packed.
This means no padding characters and no null terminators (as they could be present in the string). This
buffer includes a first chunk of data that represents an array of StringRefs, that contain address pointers
into the string data, with the length of each string wrapped. At this point there is no Sparse representation
however strings are not typically represented sparsely.
Differential Revision: https://reviews.llvm.org/D78600
Summary:
Modified AffineMap::get to remove support for the overload which allowed
an ArrayRef of AffineExpr but no context (and gathered the context from a
presumed first entry, resulting in bugs when there were 0 results).
Instead, we support only a ArrayRef and a context, and a version which
takes a single AffineExpr.
Additionally, removed some now needless case logic which previously
special cased which call to AffineMap::get to use.
Reviewers: flaub, bondhugula, rriddle!, nicolasvasilache, ftynse, ulysseB, mravishankar, antiagainst, aartbik
Subscribers: mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, bader, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78226
Summary: This revision makes the registration of command line options for these two files manual with `registerMLIRContextCLOptions` and `registerAsmPrinterCLOptions` methods. This removes the last remaining static constructors within lib/.
Differential Revision: https://reviews.llvm.org/D77960
Summary: std::function has a notoriously large amount of malloc traffic, whereas function_ref is a cheaper and more efficient alternative.
Differential Revision: https://reviews.llvm.org/D77959
Summary:
Identifier doesn't maintain a length, so every time strref() is called,
it does a strlen. In the case of comparisons, this isn't necessary:
there is no need to scan a string to get its length, then rescan it to
do the comparison. Just done one comparison.
This also moves some assertions in Identifier::get as another
microoptimization for 'assertions enabled' modes.
Reviewers: rriddle!
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77958
Summary: ClassID is a bit janky right now as it involves passing a magic pointer around. This revision hides the internal implementation mechanism within a new class TypeID. This class is a value-typed wrapper around the original ClassID implementation.
Differential Revision: https://reviews.llvm.org/D77768
Summary: It is a very common user trap to think that the location printed along with the diagnostic is the same as the current operation that caused the error. This revision changes the behavior to always print the current operation, except for when diagnostics are being verified. This is achieved by moving the command line flags in IR/ to be options on the MLIRContext.
Differential Revision: https://reviews.llvm.org/D77095
Summary:
The commit provides a single method to build affine maps with zero or more
results. Users of mlir::AffineMap previously had to dispatch between two methods
depending on the number of results.
At the same time, this commit fixes the method for building affine map with zero
results that was previously ignoring its `symbolCount` argument.
Differential Revision: https://reviews.llvm.org/D77126
This revision takes advantage of the empty AffineMap to specify the
0-D edge case. This allows removing a bunch of annoying corner cases
that ended up impacting users of Linalg.
Differential Revision: https://reviews.llvm.org/D75831
Thus far IntegerType has been signless: a value of IntegerType does
not have a sign intrinsically and it's up to the specific operation
to decide how to interpret those bits. For example, std.addi does
two's complement arithmetic, and std.divis/std.diviu treats the first
bit as a sign.
This design choice was made some time ago when we did't have lots
of dialects and dialects were more rigid. Today we have much more
extensible infrastructure and different dialect may want different
modelling over integer signedness. So while we can say we want
signless integers in the standard dialect, we cannot dictate for
others. Requiring each dialect to model the signedness semantics
with another set of custom types is duplicating the functionality
everywhere, considering the fundamental role integer types play.
This CL extends the IntegerType with a signedness semantics bit.
This gives each dialect an option to opt in signedness semantics
if that's what they want and helps code sharing. The parser is
modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as
signed and unsigned integer types, respectively, leaving the
original `i[1-9][0-9]*` to continue to mean no indication over
signedness semantics. All existing dialects are not affected (yet)
as this is a feature to opt in.
More discussions can be found at:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ
Differential Revision: https://reviews.llvm.org/D72533
Summary:
The current structure suffers from several problems, but the main one is that a construction failure is impossible to debug when using the 'get' methods. This is because we only optionally emit errors, so there is no context given to the user about the problem. This revision restructures this so that errors are always emitted, and the 'get' methods simply pass in an UnknownLoc to emit to. This allows for removing usages of the more constrained "emitOptionalLoc", as well as removing the need for the context parameter.
Fixes [PR#44964](https://bugs.llvm.org/show_bug.cgi?id=44964)
Differential Revision: https://reviews.llvm.org/D74876
See RFC: https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/xE2IzfhE3Wg.
Opaque location stores two pointers, one of them points to some data structure that is external to MLIR, and the other one is unique for each type and represents type id of that data structure. OpaqueLoc also stores an optional location that can be used if the first one is not suitable.
OpaqueLoc is managed similar to FileLineColLoc. It is passed around by MLIR transformations and can be used in compound locations like CallSiteLoc.
PiperOrigin-RevId: 273266510
Most dialects are initialized statically, which does not have a guaranteed initialization order. By keeping the dialect list sorted, we can guarantee a deterministic iteration order of dialects.
PiperOrigin-RevId: 264522875
tensorflow/mlir#58 fixed and exercised
verification of load/store ops using empty affine maps. Unfortunately,
it didn't exercise the creation of them. This PR addresses that aspect.
It removes the assumption of AffineMap having at least one result and
stores a pointer to MLIRContext as member of AffineMap.
* Add empty map support to affine.store + test
* Move MLIRContext to AffineMapStorage
Closestensorflow/mlir#74
PiperOrigin-RevId: 264416260
Verification complained when using zero-dimensional memrefs in
affine.load, affine.store, std.load and std.store. This PR extends
verification so that those memrefs can be used.
Closestensorflow/mlir#58
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/58 from dcaballe:dcaballe/zero-dim 49bcdcd45c52c48beca776431328e5ce551dfa9e
PiperOrigin-RevId: 262164916
This allows for the attribute to hold symbolic references to other operations than FuncOp. This also allows for removing the dependence on FuncOp from the base Builder.
PiperOrigin-RevId: 257650017
Now that Locations are attributes, they have direct access to the MLIR context. This allows for simplifying error emission by removing unnecessary context lookups.
PiperOrigin-RevId: 255112791
The ModuleOp contains a single region that must contain a single block. This block must be terminated by a new pseudo operation 'module_terminator'. The syntax for this operations is as follows:
`module` (`attributes` attr-dict)? region
Example:
module {
...
}
module attributes { ... } {
...
}
PiperOrigin-RevId: 254513752
This will allow for locations to be used in the same contexts as attributes. Given that attributes are nullable types, the 'Location' class now represents a non-nullable wrapper around a 'LocationAttr'. This preserves the desired semantics we have for non-optional locations.
PiperOrigin-RevId: 254505278
MLIRContext does not have to be aware of the SDBM unique data structures
directly. Move the SDBM storage uniquer from MLIRContext to the SDBM dialect
instance. Expressions that previously required a context to be constructed now
require an instance of the dialect in order to access the uniquer. While they
could look up the dialect in the context, it would have introduced a rather
expensive lookup into each construction. Instead, the caller is expected to
obtain the dialect instance and cache it.
--
PiperOrigin-RevId: 249245199
SDBM expressions are designed as components of an attribute, similarly to
affine expressions. As such, they need to be unique'd in the MLIRContext.
When SDBM expressions were implemented, uniqu'ing objects in a context required
to modify MLIRContext implementation. This is no longer the case as generic
StorageUniquer has been introduced. Port the SDBMExpr uniqu'ing to use a newly
introduced uniquer and remove SDBM construction from MLIRContext.cpp.
--
PiperOrigin-RevId: 249244739
Affine expressions are designed as components of an attribute and are unique'd
in the MLIRContext. When affine expressions were implemented, uniqu'ing
objects in a context required to modify MLIRContext implementation. This is no
longer the case as generic StorageUniquer has been introduced. Port the
AffineExpr construction to use the new infrastructure by introducing an
affineUniquer into the MLIRContext.
--
PiperOrigin-RevId: 249207539
The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements:
* A severity level.
* A source Location.
* A list of DiagnosticArguments that help compose and comprise the output message.
* A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc.
* Arguments can be added to the diagnostic via the stream(<<) operator.
* (In a future cl) A list of attached notes.
* These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own.
The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction.
These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics.
Simple Example:
emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits");
emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits";
--
PiperOrigin-RevId: 246526439
none-type ::= `none`
The `none` type is a unit type, i.e. a type with exactly one possible value, where its value does not have a defined dynamic representation.
--
PiperOrigin-RevId: 245599248
Striped difference-bound matrix expressions are a subset of affine expressions
supporting low-complexity algorithms that can be useful for loop
transformations. This introduces the basic data data structures for building
such expressions and unique'ing them in a MLIRContext.
--
PiperOrigin-RevId: 245380206
A unit attribute is an attribute that represents a value of `unit` type. The
`unit` type allows only one value forming a singleton set. This attribute value
is used to represent attributes that only have meaning from their existence.
One example of such an attribute could be the `swift.self` attribute. This attribute indicates that a function parameter is the self/context
parameter. It could be represented as a boolean attribute(true or false), but a
value of false doesn't really bring any value. The parameter either is the
self/context or it isn't.
```mlir {.mlir}
// A unit attribute defined with the `unit` value specifier.
func @verbose_form(i1 {unitAttr : unit})
// A unit attribute can also be defined without the `unit` value specifier.
func @simple_form(i1 {unitAttr})
```
--
PiperOrigin-RevId: 245254045
Extract common code from getAffineSymbolExpr and getAffineConstantExpr into a
utility function safeGetOrCreate, similarly to the existing overloads for sets
and maps. The position in the vector is used as indexing key. NFC.
--
PiperOrigin-RevId: 244820859
Currently, we only make the initial address aligned with 64-bit address but
allocate the buffer with the real size. This can cause issue when we extract
the value by the `readBits` method, which needs to read the memory in the
granularity of APINT_WORD_SIZE. In this CL, we rounded the allocation size to
the multiplies of APINT_WORD_SIZE to fix the issue.
--
PiperOrigin-RevId: 241816656
have no standard ops for working with these yet, this is simply enough to
represent and round trip them in the printer and parser.
--
PiperOrigin-RevId: 241102728