Commit Graph

411 Commits

Author SHA1 Message Date
Matthias Springer c777e51468 [mlir][Analysis][NFC] FlatAffineConstraints: Use BoundType enum in functions
Differential Revision: https://reviews.llvm.org/D108185
2021-08-19 10:33:42 +09:00
Matthias Springer c19c51e357 [mlir][Analysis][NFC] Clean up FlatAffineValueConstraints
* Rename ids to values in FlatAffineValueConstraints.
* Overall cleanup of comments in FlatAffineConstraints and FlatAffineValueConstraints.

Differential Revision: https://reviews.llvm.org/D107947
2021-08-17 10:38:57 +09:00
Matthias Springer 4c4ab673f1 [mlir][Analysis][NFC] Split FlatAffineConstraints class
* Extract "value" functionality of `FlatAffineConstraints` into a new derived `FlatAffineValueConstraints` class. Current users of `FlatAffineConstraints` can use `FlatAffineValueConstraints` without additional code changes, thus NFC.
* `FlatAffineConstraints` no longer associates dimensions with SSA Values. All functionality that requires this, is moved to `FlatAffineValueConstraints`.
* `FlatAffineConstraints` no longer makes assumptions about where Values associated with dimensions are coming from.

Differential Revision: https://reviews.llvm.org/D107725
2021-08-17 10:09:17 +09:00
Tyler Augustine 3a2ff982d7 Support post-processing Ops in unrolled loop iterations
This can be useful when one needs to know which unrolled iteration an Op belongs to, for example, conveying noalias information among memory-affecting ops in parallel-access loops.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D107789
2021-08-11 23:11:10 +00:00
Uday Bondhugula bf6c46d917 [MLIR] NFC Clean up doc comments on memref replacement utility
NFC. Clean up stale doc comments on memref replacement utility and some
variable renaming in it to avoid confusion.

Differential Revision: https://reviews.llvm.org/D107144
2021-07-31 15:14:52 +05:30
Benjamin Kramer 1c9c2c91d4 [mlir] Remove the default isDynamicallyLegal hook
This is redundant with the callback variant and untested. Also remove
the callback-less methods for adding a dynamically legal op, as they
are no longer useful.

Differential Revision: https://reviews.llvm.org/D106786
2021-07-29 11:00:57 +02:00
Mehdi Amini 0be5d1a96c Implement recursive support into OperationEquivalence::isEquivalentTo()
This allows to use OperationEquivalence to track structural comparison for equality
between two operations.

Differential Revision: https://reviews.llvm.org/D106422
2021-07-29 05:06:37 +00:00
River Riddle f8479d9de5 [mlir] Set the namespace of the BuiltinDialect to 'builtin'
Historically the builtin dialect has had an empty namespace. This has unfortunately created a very awkward situation, where many utilities either have to special case the empty namespace, or just don't work at all right now. This revision adds a namespace to the builtin dialect, and starts to cleanup some of the utilities to no longer handle empty namespaces. For now, the assembly form of builtin operations does not require the `builtin.` prefix. (This should likely be re-evaluated though)

Differential Revision: https://reviews.llvm.org/D105149
2021-07-28 21:00:10 +00:00
Butygin b7a4649899 [mlir] ConversionTarget legality callbacks refactoring
* Get rid of Optional<std::function> as std::function already have a null state
* Add private setLegalityCallback function to set legality callback for unknown ops
* Get rid of unknownOpsDynamicallyLegal flag, use unknownLegalityFn state insted. This causes behavior change when user first calls markUnknownOpDynamicallyLegal with callback and then without but I am not sure is the original behavior was really a 'feature', or just oversignt in the original implementation.

Differential Revision: https://reviews.llvm.org/D105496
2021-07-24 14:59:36 +03:00
Uday Bondhugula 7932d21f5d [MLIR] Introduce a new rewrite driver to simplify supplied list of ops
Introduce a new rewrite driver (MultiOpPatternRewriteDriver) to rewrite
a supplied list of ops and other ops. Provide a knob to restrict
rewrites strictly to those ops or also to affected ops (but still not to
completely related ops).

This rewrite driver is commonly needed to run any simplification and
cleanup at the end of a transforms pass or transforms utility in a way
that only simplifies relevant IR. This makes it easy to write test cases
while not performing unrelated whole IR simplification that may
invalidate other state at the caller.

The introduced utility provides more freedom to developers of transforms
and transform utilities to perform focussed and local simplification. In
several cases, it provides greater efficiency as well as more
simplification when compared to repeatedly calling
`applyOpPatternsAndFold`; in other cases, it avoids the need to
undesirably call `applyPatternsAndFoldGreedily` to do unrelated
simplification in a FuncOp.

Update a few transformations that were earlier using
applyOpPatternsAndFold (SimplifyAffineStructures,
affineDataCopyGenerate, a linalg transform).

TODO:
- OpPatternRewriteDriver can be removed as it's a special case of
  MultiOpPatternRewriteDriver, i.e., both can be merged.

Differential Revision: https://reviews.llvm.org/D106232
2021-07-21 20:25:16 +05:30
Sumesh Udayakumaran ada580863f [mlir] Enable cleanup of single iteration reduction loops being sibling-fused maximally
Changes include the following:
    1. Single iteration reduction loops being sibling fused at innermost insertion level
     are skipped from being considered as sequential loops.
    Otherwise, the slice bounds of these loops is reset.

    2. Promote loops that are skipped in previous step into outer loops.

    3. Two utility function - buildSliceTripCountMap, getSliceIterationCount - are moved from
mlir/lib/Transforms/Utils/LoopFusionUtils.cpp to mlir/lib/Analysis/Utils.cpp

Reviewed By: bondhugula, vinayaka-polymage

Differential Revision: https://reviews.llvm.org/D104249
2021-07-16 00:07:20 +03:00
Uday Bondhugula 0c29f45ac9 [MLIR] Fix dialect conversion cancelRootUpdate
Fix dialect conversion ConversionPatternRewriter::cancelRootUpdate: the
erasure of operations here from the list of root update was off by one.
Should have been:
```
rootUpdates.erase(rootUpdates.begin() + (rootUpdates.rend() - it - 1));
```
instead of
```
rootUpdates.erase(rootUpdates.begin() + (rootUpdates.rend() - it));
```

or more directly:
```
rootUpdates.erase(it.base() - 1)
```

While on this, add an assertion to improve dev experience when a cancel is
called on an op on which a root update hasn't been started.

Differential Revision: https://reviews.llvm.org/D105397
2021-07-06 15:19:49 +05:30
Uday Bondhugula 071d26f808 [MLIR] Fix generateCopyForMemRefRegion
Fix generateCopyForMemRefRegion for a missing check: in some cases, when
the thing to generate copies for itself is empty, no fast buffer/copy
loops would have been allocated/generated. Add an extra assertion there
while at this.

Differential Revision: https://reviews.llvm.org/D105170
2021-06-30 10:24:10 +05:30
Jacques Pienaar 0e760a0870 Add hook for dialect specializing processing blocks post inlining calls
This allows for dialects to do different post-processing depending on operations with the inliner (my use case requires different attribute propagation rules depending on call op). This hook runs before the regular processInlinedBlocks method.

Differential Revision: https://reviews.llvm.org/D104399
2021-06-16 12:53:21 -07:00
Chris Lattner 64716b2c39 [GreedyPatternRewriter] Introduce a config object that allows controlling internal parameters. NFC.
This exposes the iterations and top-down processing as flags, and also
allows controlling whether region simplification is desirable for a client.
This allows deleting some duplicated entrypoints to
applyPatternsAndFoldGreedily.

This also deletes the Constant Preprocessing pass, which isn't worth it
on balance.

All defaults are all kept the same, so no one should see a behavior change.

Differential Revision: https://reviews.llvm.org/D102988
2021-05-24 12:40:40 -07:00
Haruki Imai 000a05fd1a [mlir] Normalize dynamic memrefs with a map of tiled-layout.
Steps for normalizing dynamic memrefs for tiled layout map
1. Check if original map is tiled layout. Only tiled layout is supported.
2. Create normalized memrefType. Dimensions that include dynamic dimensions
   in the map output will be dynamic dimensions.
3. Create new maps to calculate each dimension size of new memref.
   In tiled layout, the dimension size can be calculated by replacing
    "floordiv <tile size>" with "ceildiv <tile size>" and
    "mod <tile size>" with "<tile size>".
4. Create AffineApplyOp to apply the new maps. The output of AffineApplyOp is
   dynamicSizes for new AllocOp.
5. Add the new dynamic sizes in new AllocOp.

This patch also set MemRefsNormalizable trant in CastOp and DimOp since
they used with dynamic memrefs.

Reviewed By: bondhugula

Differential Revision: https://reviews.llvm.org/D97655
2021-05-24 08:39:36 +05:30
Chris Lattner 648f34a284 Merge with mainline.
Differential Revision: https://reviews.llvm.org/D102636
2021-05-17 11:15:10 -07:00
River Riddle 53b946aa63 [mlir] Refactor the representation of function-like argument/result attributes.
The current design uses a unique entry for each argument/result attribute, with the name of the entry being something like "arg0". This provides for a somewhat sparse design, but ends up being much more expensive (from a runtime perspective) in-practice. The design requires building a string every time we lookup the dictionary for a specific arg/result, and also requires N attribute lookups when collecting all of the arg/result attribute dictionaries.

This revision restructures the design to instead have an ArrayAttr that contains all of the attribute dictionaries for arguments and another for results. This design reduces the number of attribute name lookups to 1, and allows for O(1) lookup for individual element dictionaries. The major downside is that we can end up with larger memory usage, as the ArrayAttr contains an entry for each element even if that element has no attributes. If the memory usage becomes too problematic, we can experiment with a more sparse structure that still provides a lot of the wins in this revision.

This dropped the compilation time of a somewhat large TensorFlow model from ~650 seconds to ~400 seconds.

Differential Revision: https://reviews.llvm.org/D102035
2021-05-07 19:32:31 -07:00
River Riddle 4efb7754e0 [mlir][NFC] Add a using directive for llvm::SetVector
Differential Revision: https://reviews.llvm.org/D100436
2021-04-15 16:09:34 -07:00
KareemErgawy-TomTom aa6eb2af10 [MLIR][LinAlg] Implement detensoring cost-modelling.
This patch introduces the neccessary infrastructure changes to implement
cost-modelling for detensoring. In particular, it introduces the
following changes:
- An extension to the dialect conversion framework to selectively
convert sub-set of non-entry BB arguments.
- An extension to branch conversion pattern to selectively convert
sub-set of a branche's operands.
- An interface for detensoring cost-modelling.
- 2 simple implementations of 2 different cost models.

This sets the stage to explose cost-modelling for detessoring in an
easier way. We still need to come up with better cost models.

Reviewed By: silvas

Differential Revision: https://reviews.llvm.org/D99945
2021-04-13 09:07:18 +02:00
Sean Silva 223dcdcfbe [mlir] Add optional TypeConverter for materializations.
`ConversionPatternRewriter::applySignatureConversion` did not have a way
to apply a signature conversion that involved materializations.

Differential Revision: https://reviews.llvm.org/D99782
2021-04-02 13:39:06 -07:00
Mehdi Amini 51a07182b3 Setup OpBuilder to support detached block in loopUnrollByFactor (NFC)
Setting the builder from a block is looking up for a parent operation
to get a context, instead by setting up the builder with an explicit
context we can support invoking this helper in absence of a parent
operation.
2021-04-01 23:34:03 +00:00
Vinayaka Bandishti dc537158d5 [MLIR][Affine] Add utility to check if the slice is valid
Fixes a bug in affine fusion pipeline where an incorrect slice is computed.
After the slice computation is done, original domain of the the source is
compared with the new domain that will result if the fusion succeeds. If the
new domain must be a subset of the original domain for the slice to be
valid. If the slice computed is incorrect, fusion based on such a slice is
avoided.

Relevant test cases are added/edited.

Fixes https://bugs.llvm.org/show_bug.cgi?id=49203

Differential Revision: https://reviews.llvm.org/D98239
2021-04-01 14:52:22 +05:30
Mehdi Amini a360a9786f Fix deletion of operations through the rewriter in a pattern matching a consumer operation
This allows for the conversion to match `A(B()) -> C()` with a pattern matching
`A` and marking `B` for deletion.

Also add better assertions when an operation is erased while still having uses.

Differential Revision: https://reviews.llvm.org/D99442
2021-03-30 22:02:14 +00:00
Uday Bondhugula 0b20413ef6 Revert "[Canonicalizer] Process regions top-down instead of bottom up & reuse existing constants."
This reverts commit 361b7d125b by Chris
Lattner <clattner@nondot.org> dated Fri Mar 19 21:22:15 2021 -0700.

The change to the greedy rewriter driver picking a different order was
made without adequate analysis of the trade-offs and experimentation. A
change like this has far reaching consequences on transformation
pipelines, and a major impact upstream and downstream. For eg., one
can’t be sure that it doesn’t slow down a large number of cases by small
amounts or create other issues. More discussion here:
https://llvm.discourse.group/t/speeding-up-canonicalize/3015/25

Reverting this so that improvements to the traversal order can be made
on a clean slate, in bigger steps, and higher bar.

Differential Revision: https://reviews.llvm.org/D99329
2021-03-25 22:17:26 +05:30
Mehdi Amini 973ddb7d6e Define a `NoTerminator` traits that allows operations with a single block region to not provide a terminator
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.

To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.

This patch is likely to break clients, if you're in this case:

- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
  the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
  just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.

Differential Revision: https://reviews.llvm.org/D98468
2021-03-25 03:59:03 +00:00
River Riddle 76f3c2f3f3 [mlir][Pattern] Add better support for using interfaces/traits to match root operations in rewrite patterns
To match an interface or trait, users currently have to use the `MatchAny` tag. This tag can be quite problematic for compile time for things like the canonicalizer, as the `MatchAny` patterns may get applied to  *every* operation. This revision adds better support by bucketing interface/trait patterns based on which registered operations have them registered. This means that moving forward we will only attempt to match these patterns to operations that have this interface registered. Two simplify defining patterns that match traits and interfaces, two new utility classes have been added: OpTraitRewritePattern and OpInterfaceRewritePattern.

Differential Revision: https://reviews.llvm.org/D98986
2021-03-23 14:05:33 -07:00
Chris Lattner 79d7f618af Rename FrozenRewritePatternList -> FrozenRewritePatternSet; NFC.
This nicely aligns the naming with RewritePatternSet.  This type isn't
as widely used, but we keep a using declaration in to help with
downstream consumption of this change.

Differential Revision: https://reviews.llvm.org/D99131
2021-03-22 17:40:45 -07:00
Chris Lattner dc4e913be9 [PatternMatch] Big mechanical rename OwningRewritePatternList -> RewritePatternSet and insert -> add. NFC
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names.  We'll keep the old names around for a
couple weeks to help transitions.

Differential Revision: https://reviews.llvm.org/D99127
2021-03-22 17:20:50 -07:00
Adrian Kuegel c691b9686b [mlir] Add an option to still use bottom-up traversal
GreedyPatternRewriteDriver was changed from bottom-up traversal to top-down traversal. Not all passes work yet with that change for traversal order. To give some time for fixing, add an option to allow to switch back to bottom-up traversal. Use this option in FusionOfTensorOpsPass which fails otherwise.

Differential Revision: https://reviews.llvm.org/D99059
2021-03-22 09:49:44 +01:00
Chris Lattner 3a506b31a3 Change OwningRewritePatternList to carry an MLIRContext with it.
This updates the codebase to pass the context when creating an instance of
OwningRewritePatternList, and starts removing extraneous MLIRContext
parameters.  There are many many more to be removed.

Differential Revision: https://reviews.llvm.org/D99028
2021-03-21 10:06:31 -07:00
Chris Lattner 361b7d125b [Canonicalizer] Process regions top-down instead of bottom up & reuse existing constants.
This reapplies b5d9a3c / https://reviews.llvm.org/D98609 with a one line fix in
processExistingConstants to skip() when erasing a constant we've already seen.

Original commit message:

 1) Change the canonicalizer to walk the function in top-down order instead of
    bottom-up order.  This composes well with the "top down" nature of constant
    folding and simplification, reducing iterations and re-evaluation of ops in
    simple cases.
 2) Explicitly enter existing constants into the OperationFolder table before
    canonicalizing.  Previously we would "constant fold" them and rematerialize
    them, wastefully recreating a bunch fo constants, which lead to pointless
    memory traffic.

Both changes together provide a 33% speedup for canonicalize on some mid-size
CIRCT examples.

One artifact of this change is that the constants generated in normal pattern
application get inserted at the top of the function as the patterns are applied.
Because of this, we get "inverted" constants more often, which is an aethetic
change to the IR but does permute some testcases.

Differential Revision: https://reviews.llvm.org/D99006
2021-03-20 16:30:15 -07:00
River Riddle d75a611afb [mlir] Update `simplifyRegions` to use RewriterBase for erasure notifications
This allows for notifying callers when operations/blocks get erased, which is especially useful for the greedy pattern driver. The current greedy pattern driver "throws away" all information on constants in the operation folder because it doesn't know if they get erased or not. By passing in RewriterBase, we can directly track this and prevent the need for the pattern driver to rediscover all of the existing constants. In some situations this cuts the compile time of the canonicalizer in half.

Differential Revision: https://reviews.llvm.org/D98755
2021-03-19 16:33:54 -07:00
Andrew Young f178c13fa8
[mlir] Support use-def cycles in graph regions during regionDCE
When deleting operations in DCE, the algorithm uses a post-order walk of
the IR to ensure that value uses were erased before value defs. Graph
regions do not have the same structural invariants as SSA CFG, and this
post order walk could delete value defs before uses.  This problem is
guaranteed to occur when there is a cycle in the use-def graph.

This change stops DCE from visiting the operations and blocks in any
meaningful order.  Instead, we rely on explicitly dropping all uses of a
value before deleting it.

Reviewed By: mehdi_amini, rriddle

Differential Revision: https://reviews.llvm.org/D98919
2021-03-18 23:06:45 -07:00
Julian Gross e2310704d8 [MLIR] Create memref dialect and move dialect-specific ops from std.
Create the memref dialect and move dialect-specific ops
from std dialect to this dialect.

Moved ops:
AllocOp -> MemRef_AllocOp
AllocaOp -> MemRef_AllocaOp
AssumeAlignmentOp -> MemRef_AssumeAlignmentOp
DeallocOp -> MemRef_DeallocOp
DimOp -> MemRef_DimOp
MemRefCastOp -> MemRef_CastOp
MemRefReinterpretCastOp -> MemRef_ReinterpretCastOp
GetGlobalMemRefOp -> MemRef_GetGlobalOp
GlobalMemRefOp -> MemRef_GlobalOp
LoadOp -> MemRef_LoadOp
PrefetchOp -> MemRef_PrefetchOp
ReshapeOp -> MemRef_ReshapeOp
StoreOp -> MemRef_StoreOp
SubViewOp -> MemRef_SubViewOp
TransposeOp -> MemRef_TransposeOp
TensorLoadOp -> MemRef_TensorLoadOp
TensorStoreOp -> MemRef_TensorStoreOp
TensorToMemRefOp -> MemRef_BufferCastOp
ViewOp -> MemRef_ViewOp

The roadmap to split the memref dialect from std is discussed here:
https://llvm.discourse.group/t/rfc-split-the-memref-dialect-from-std/2667

Differential Revision: https://reviews.llvm.org/D98041
2021-03-15 11:14:09 +01:00
Alex Zinenko 40d8e4d3f9 Revert "[Canonicalizer] Process regions top-down instead of bottom up & reuse existing constants."
This reverts commit b5d9a3c923.

The commit introduced a memory error in canonicalization/operation
walking that is exposed when compiled with ASAN. It leads to crashes in
some "release" configurations.
2021-03-15 10:27:55 +01:00
Chris Lattner 91a6ad5ad8 [m_Constant] Check #operands/results before hasTrait()
We know that all ConstantLike operations have one result and no operands,
so check this first before doing the trait check.  This change speeds up
Canonicalize on a CIRCT testcase by ~5%.

Differential Revision: https://reviews.llvm.org/D98615
2021-03-14 20:14:19 -07:00
Chris Lattner b5d9a3c923 [Canonicalizer] Process regions top-down instead of bottom up & reuse existing constants.
Two changes:
 1) Change the canonicalizer to walk the function in top-down order instead of
    bottom-up order.  This composes well with the "top down" nature of constant
    folding and simplification, reducing iterations and re-evaluation of ops in
    simple cases.
 2) Explicitly enter existing constants into the OperationFolder table before
    canonicalizing.  Previously we would "constant fold" them and rematerialize
    them, wastefully recreating a bunch fo constants, which lead to pointless
    memory traffic.

Both changes together provide a 33% speedup for canonicalize on some mid-size
CIRCT examples.

One artifact of this change is that the constants generated in normal pattern
application get inserted at the top of the function as the patterns are applied.
Because of this, we get "inverted" constants more often, which is an aethetic
change to the IR but does permute some testcases.

Differential Revision: https://reviews.llvm.org/D98609
2021-03-14 18:21:42 -07:00
River Riddle 4e02eb8014 [mlir] Optimize the implementation of RegionDCE
The current implementation has some inefficiencies that become noticeable when running on large modules. This revision optimizes the code, and updates some out-dated idioms with newer utilities. The main components of this optimization include:

* Add an overload of Block::eraseArguments that allows for O(N) erasure of disjoint arguments.
* Don't process entry block arguments given that we don't erase them at this point.
* Don't track individual operation results, given that we don't erase them. We can just track the parent operation.

Differential Revision: https://reviews.llvm.org/D98309
2021-03-10 16:39:50 -08:00
Lei Zhang 50000abe3c [mlir] Use affine.apply when distributing to processors
This makes it easy to compose the distribution computation with
other affine computations.

Reviewed By: mravishankar

Differential Revision: https://reviews.llvm.org/D98171
2021-03-09 08:37:20 -05:00
River Riddle 3dfa86149e [mlir][IR] Refactor the internal implementation of Value
The current implementation of Value involves a pointer int pair with several different kinds of owners, i.e. BlockArgumentImpl*, Operation *, TrailingOpResult*. This design arose from the desire to save memory overhead for operations that have a very small number of results (generally 0-2). There are, unfortunately, many problematic aspects of the current implementation that make Values difficult to work with or just inefficient.

Operation result types are stored as a separate array on the Operation. This is very inefficient for many reasons: we use TupleType for multiple results, which can lead to huge amounts of memory usage if multi-result operations change types frequently(they do). It also means that simple methods like Value::getType/Value::setType now require complex logic to get to the desired type.

Value only has one pointer bit free, severely limiting the ability to use it in things like PointerUnion/PointerIntPair. Given that we store the kind of a Value along with the "owner" pointer, we only leave one bit free for users of Value. This creates situations where we end up nesting PointerUnions to be able to use Value in one.

As noted above, most of the methods in Value need to branch on at least 3 different cases which is both inefficient, possibly error prone, and verbose. The current storage of results also creates problems for utilities like ValueRange/TypeRange, which want to efficiently store base pointers to ranges (of which Operation* isn't really useful as one).

This revision greatly simplifies the implementation of Value by the introduction of a new ValueImpl class. This class contains all of the state shared between all of the various derived value classes; i.e. the use list, the type, and the kind. This shared implementation class provides several large benefits:

* Most of the methods on value are now branchless, and often one-liners.

* The "kind" of the value is now stored in ValueImpl instead of Value
This frees up all of Value's pointer bits, allowing for users to take full advantage of PointerUnion/PointerIntPair/etc. It also allows for storing more operation results as "inline", 6 now instead of 2, freeing up 1 word per new inline result.

* Operation result types are now stored in the result, instead of a side array
This drops the size of zero-result operations by 1 word. It also removes the memory crushing use of TupleType for operations results (which could lead up to hundreds of megabytes of "dead" TupleTypes in the context). This also allowed restructured ValueRange, making it simpler and one word smaller.

This revision does come with two conceptual downsides:
* Operation::getResultTypes no longer returns an ArrayRef<Type>
This conceptually makes some usages slower, as the iterator increment is slightly more complex.
* OpResult::getOwner is slightly more expensive, as it now requires a little bit of arithmetic

From profiling, neither of the conceptual downsides have resulted in any perceivable hit to performance. Given the advantages of the new design, most compiles are slightly faster.

Differential Revision: https://reviews.llvm.org/D97804
2021-03-03 14:33:37 -08:00
KareemErgawy-TomTom 3b021fbdc0 [MLIR][LinAlg] Detensorize interal function control flow.
This patch continues detensorizing implementation by detensoring
internal control flow in functions.

In order to detensorize functions, all the non-entry block's arguments
are detensored and branches between such blocks are properly updated to
reflect the detensored types as well. Function entry block (signature)
is left intact.

This continues work towards handling github/google/iree#1159.

Reviewed By: silvas

Differential Revision: https://reviews.llvm.org/D97148
2021-03-02 11:46:20 +01:00
Vladislav Vinogradov 37eca08e5b [mlir][NFC] Rename `MemRefType::getMemorySpace` to `getMemorySpaceAsInt`
Just a pure method renaming.

It is a preparation step for replacing "memory space as raw integer"
with more generic "memory space as attribute", which will be done in
separate commit.

The `MemRefType::getMemorySpace` method will return `Attribute` and
become the main API, while `getMemorySpaceAsInt` will be declared as
deprecated and will be replaced in all in-tree dialects (also in separate
commits).

Reviewed By: mehdi_amini, rriddle

Differential Revision: https://reviews.llvm.org/D97476
2021-03-02 11:08:54 +03:00
River Riddle e6260ad043 [mlir] Simplify various pieces of code now that Identifier has access to the Context/Dialect
This also exposed a bug in Dialect loading where it was not correctly identifying identifiers that had the dialect namespace as a prefix.

Differential Revision: https://reviews.llvm.org/D97431
2021-02-26 18:00:05 -08:00
Vivek 817d343fb0 [MLIR] Fix tilePerfectlyNested utility for handling non-unit step size
The current implementation of tilePerfectlyNested utility doesn't handle
the non-unit step size. We have added support to perform tiling
correctly even if the step size of the loop to be tiled is non-unit.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49188.

Differential Revision: https://reviews.llvm.org/D97037
2021-02-23 00:50:04 +05:30
Alexander Belyaev a89035d750 Revert "[MLIR] Create memref dialect and move several dialect-specific ops from std."
This commit introduced a cyclic dependency:
Memref dialect depends on Standard because it used ConstantIndexOp.
Std depends on the MemRef dialect in its EDSC/Intrinsics.h

Working on a fix.

This reverts commit 8aa6c3765b.
2021-02-18 12:49:52 +01:00
Julian Gross 8aa6c3765b [MLIR] Create memref dialect and move several dialect-specific ops from std.
Create the memref dialect and move several dialect-specific ops without
dependencies to other ops from std dialect to this dialect.

Moved ops:
AllocOp -> MemRef_AllocOp
AllocaOp -> MemRef_AllocaOp
DeallocOp -> MemRef_DeallocOp
MemRefCastOp -> MemRef_CastOp
GetGlobalMemRefOp -> MemRef_GetGlobalOp
GlobalMemRefOp -> MemRef_GlobalOp
PrefetchOp -> MemRef_PrefetchOp
ReshapeOp -> MemRef_ReshapeOp
StoreOp -> MemRef_StoreOp
TransposeOp -> MemRef_TransposeOp
ViewOp -> MemRef_ViewOp

The roadmap to split the memref dialect from std is discussed here:
https://llvm.discourse.group/t/rfc-split-the-memref-dialect-from-std/2667

Differential Revision: https://reviews.llvm.org/D96425
2021-02-18 11:29:39 +01:00
Adam Straw 99c0458f2f separate AffineMapAccessInterface from AffineRead/WriteOpInterface
Separating the AffineMapAccessInterface from AffineRead/WriteOp interface so that dialects which extend Affine capabilities (e.g. PlaidML PXA = parallel extensions for Affine) can utilize relevant passes (e.g. MemRef normalization).

Reviewed By: bondhugula

Differential Revision: https://reviews.llvm.org/D96284
2021-02-16 13:05:27 -08:00
Nicolas Vasilache d01ea0edaa [mlir] Drop reliance of SliceAnalysis on specific ops.
SliceAnalysis originally was developed in the context of affine.for within mlfunc.
It predates the notion of region.
This revision updates it to not hardcode specific ops like scf::ForOp.
When rooted at an op, the behavior of the slice computation changes as it recurses into the regions of the op. This does not support gathering all values transitively depending on a loop induction variable anymore.
Additional variants rooted at a Value are added to also support the existing behavior.

Differential revision: https://reviews.llvm.org/D96702
2021-02-16 06:34:32 +00:00
Uday Bondhugula 5400f602cd [MLIR] Update affine.for unroll utility for iter_args support
Update affine.for loop unroll utility for iteration arguments support.
Fix promoteIfSingleIteration as well.

Fixes PR49084: https://bugs.llvm.org/show_bug.cgi?id=49084

Differential Revision: https://reviews.llvm.org/D96383
2021-02-10 10:38:47 +05:30