This is part of an effort to reduce the differences between the custom C++ bindings used right now by polly in `lib/External/isl/include/isl/isl-noxceptions.h` and the official isl C++ interface.
With this commit we are moving from the `polly-generator` branch to the `new-polly-generator` branch that is more mantainable and is based on the official C++ interface `cpp-checked.h`.
Changes made:
- There are now many sublcasses for `isl::ast_node` representing different isl types. Use `isl::ast_node_for`, `isl::ast_node_user`, `isl::ast_node_block` and `isl::ast_node_mark` where needed.
- There are now many sublcasses for `isl::schedule_node` representing different isl types. Use `isl::schedule_node_mark`, `isl::schedule_node_extension`, `isl::schedule_node_band` and `isl::schedule_node_filter` where needed.
- Replace the `isl::*::dump` with `dumpIslObj` since the isl dump method is not exposed in the C++ interface.
- `isl::schedule_node::get_child` has been renamed to `isl::schedule_node::child`
- `isl::pw_multi_aff::get_pw_aff` has been renamed to `isl::pw_multi_aff::at`
- The constructor `isl::union_map(isl::union_pw_multi_aff)` has been replaced with the static method `isl::union_map::from()`
- Replace usages of `isl::val::add_ui` with `isl::val::add`
- `isl::union_set_list::alloc` is now a constructor
- All the `isl_size` values are now wrapped inside the class `isl::size` use `isl::size::release` to get the internal `isl_size` value where needed.
- `isl-noexceptions.h` has been generated by 73f5ed1f4d
No functional change intended.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D107225
This is part of an effort to reduce the differences between the custom C++ bindings used right now by polly in `lib/External/isl/include/isl/isl-noxceptions.h` and the official isl C++ interface.
Changes made:
- Use `isl::*::ctx()` instead of `isl::*::get_ctx()` (for example `isl::space::ctx()` instead of `isl::space::get_ctx()`)
- Add `isl::` namespace in front of isl types to avoid confusion (for example `isl::space::ctx` and `isl::ctx`
- `isl-noexceptions.h` has been generated by this b64e33c62d
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D105691
This is part of an effort to reduce the differences between the custom C++ bindings used right now by polly in `lib/External/isl/include/isl/isl-noxceptions.h` and the official isl C++ interface.
Changes made:
- Removing explicit operator bool() from all the classes in the isl C++ bindings.
- Replace each call to operator bool() to method `is_null()`.
- isl-noexceptions.h has been generated by this 27396daac5
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D103976
[Polly][Isl] Removing nullptr constructor from C++ bindings. NFC.
This is part of an effort to reduce the differences between the custom C++ bindings used right now by polly in `lib/External/isl/include/isl/isl-noxceptions.h` and the official isl C++ interface.
Changes made:
- Removed `std::nullptr_t` constructor from all the classes in the isl C++ bindings.
- `isl-noexceptions.h` has been generated by this a7e00bea38
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D103751
[Polly][Isl] Removing nullptr constructor from C++ bindings. NFC.
This is part of an effort to reduce the differences between the custom C++ bindings used right now by polly in `lib/External/isl/include/isl/isl-noxceptions.h` and the official isl C++ interface.
Changes made:
- Removed `std::nullptr_t` constructor from all the classes in the isl C++ bindings.
- `isl-noexceptions.h` has been generated by this a7e00bea38
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D103751
Functions shared between generalized matrix-multiplication optimization
and other post-reschedule optimizations (tiling, prevect) are moved into
the schedule tree transformation utility ScheduleTreeTransform.
This produced a compile error with GCC:
llvm-project/polly/lib/Transform/ScheduleOptimizer.cpp:1220:49: error: cannot convert ‘bool’ to ‘llvm::TargetTransformInfo::RegisterKind’
1220 | RegisterBitwidth = TTI->getRegisterBitWidth(true);
Make Polly look for unrolling metadata (https://llvm.org/docs/TransformMetadata.html#loop-unrolling) that is usually only interpreted by the LoopUnroll pass and apply it to the SCoP's schedule.
While not that useful by itself (there already is an unroll pass), it introduces mechanism to apply arbitrary loop transformation directives in arbitrary order to the schedule. Transformations are applied until no more directives are found. Since ISL's rescheduling would discard the manual transformations and it is assumed that when the user specifies the sequence of transformations, they do not want any other transformations to apply. Applying user-directed transformations can be controlled using the `-polly-pragma-based-opts` switch and is enabled by default.
This does not influence the SCoP detection heuristic. As a consequence, loop that do not fulfill SCoP requirements or the initial profitability heuristic will be ignored. `-polly-process-unprofitable` can be used to disable the latter.
Other than manually editing the IR, there is currently no way for the user to add loop transformations in an order other than the order in the default pipeline, or transformations other than the one supported by clang's LoopHint. See the `unroll_double.ll` test as example that clang currently is unable to emit. My own extension of `#pragma clang loop` allowing an arbitrary order and additional transformations is available here: https://github.com/meinersbur/llvm-project/tree/pragma-clang-loop. An effort to upstream this functionality as `#pragma clang transform` (because `#pragma clang loop` has an implicit transformation order defined by the loop pipeline) is D69088.
Additional transformations from my downstream pragma-clang-loop branch are tiling, interchange, reversal, unroll-and-jam, thread-parallelization and array packing. Unroll was chosen because it uses already-defined metadata and does not require correctness checks.
Reviewed By: sebastiankreutzer
Differential Revision: https://reviews.llvm.org/D97977
Regenerate the C++ wrapper header from the current isl version's
headers.
The most notable change is that some dimension sizes are represented by
an isl_size (instead of unsigned), which is a signed int. Additionally,
some function may return -1 in case of an error which already had been
fixed in the past. The C++ may no return -1 instead of UINT_MAX which
caused the problems.
Some types in Polly had been changed from unsigned to isl_size
(that were not already auto) and some loops/comparision had to be
changed to avoid unsigned/signed comparison warnings.
These are implementation details of the IslScheduleOptimizer pass
implementation and not use anywhere else. Hence, we can move them to the
cpp file and into an anonymous namespace.
Only getPartialTilePrefixes is, aside from the pass itself, used
externally (by the ScheduleOptimizerTest) and moved into the polly
namespace.
The schedule of a fused loop has one isl_space per statement, such that
a conversion to a isl_map fails. However, the prevectorization is
interested in the schedule space only: Converting to the non-union
representation only after extracting the schedule range fixes the problem.
This fixes llvm.org/PR46578
The member LastSchedule was never set, such that printScop would always
print "n/a" instead of the last schedule.
To ensure that the isl_ctx lives as least as long as the stored
schedule, also store a shared_ptr.
Also set the schedule tree output style to ISL_YAML_STYLE_BLOCK to avoid
printing everything on a single line.
`opt -polly-opt-isl -analyze` will be used in the next commit.
../polly/lib/Transform/ScheduleOptimizer.cpp:812:54: warning: comparison of integers of different signs: 'isl_size' (aka 'int') and 'const unsigned int' [-Wsign-compare]
isl_schedule_node_band_n_member(Node.get()) >
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
lib/Transform/ScheduleOptimizer.cpp fails to compile on Solaris, both on the 9.x
branch (first noticed when running test-release.sh without -no-polly) and on trunk:
/var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp: In function ‘MicroKernelParamsTy getMicroKernelParams(const llvm::TargetTransformInfo*, polly::MatMulInfoTy)’:
/var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp:914:62: error: call of overloaded ‘sqrt(long unsigned int)’ is ambiguous
914 | ceil(sqrt(Nvec * LatencyVectorFma * ThroughputVectorFma) / Nvec) * Nvec;
| ^
In file included from /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/math.h:24,
from /usr/gcc/9/include/c++/9.1.0/cmath:45,
from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm-c/DataTypes.h:28,
from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/Support/DataTypes.h:16,
from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/ADT/Hashing.h:47,
from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/ADT/ArrayRef.h:12,
from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/include/polly/ScheduleOptimizer.h:12,
from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp:48:
/usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:220:21: note: candidate: ‘long double std::sqrt(long double)’
220 | inline long double sqrt(long double __X) { return __sqrtl(__X); }
| ^~~~
/usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:186:15:
note: candidate: ‘float std::sqrt(float)’
186 | inline float sqrt(float __X) { return __sqrtf(__X); }
| ^~~~
/usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:74:15:
note: candidate: ‘double std::sqrt(double)’
74 | extern double sqrt __P((double));
| ^~~~
/var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp:915:67:
error: call of overloaded ‘ceil(long unsigned int)’ is ambiguous
915 | int Mr = ceil(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr);
| ^
In file included from /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/math.h:24,
from /usr/gcc/9/include/c++/9.1.0/cmath:45,
from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm-c/DataTypes.h:28,
from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/Support/DataTypes.h:16,
from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/ADT/Hashing.h:47,
from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/ADT/ArrayRef.h:12,
from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/include/polly/ScheduleOptimizer.h:12,
from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp:48:
/usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:196:21: note: candidate: ‘long double std::ceil(long double)’
196 | inline long double ceil(long double __X) { return __ceill(__X); }
| ^~~~
/usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:160:15:
note: candidate: ‘float std::ceil(float)’
160 | inline float ceil(float __X) { return __ceilf(__X); }
| ^~~~
/usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:76:15:
note: candidate: ‘double std::ceil(double)’
76 | extern double ceil __P((double));
| ^~~~
Fixed by adding casts to disambiguate, checked that it now compiles on both
amd64-pc-solaris2.11 and sparcv9-sun-solaris2.11 and on x86_64-pc-linux-gnu.
Differential Revision: https://reviews.llvm.org/D67442
llvm-svn: 371825
Extension nodes make schedule trees are less flexible: Many operations,
such as rescheduling, do not work on such schedule trees with extension.
As such, some functionality such as determining parallel loops in isl's
AST are disabled.
Currently, only the pattern-matching generalized matrix-matrix
multiplication optimization adds extension nodes (to add copy-in
statements).
This patch removes all extension nodes as the last step of the schedule
optimization by hoisting the extension node's added domain up to the
root domain node. All following passes can assume that schedule trees
work without restrictions, including the parallelism test. Mark the
outermost loop of the optimized matrix-matrix multiplication as parallel
such that -polly-parallel is able to parallelize that loop.
Differential Revision: https://reviews.llvm.org/D58202
llvm-svn: 362257
This removes unused includes (and forward declarations) as
suggested by include-what-you-use. If a transitive include of a removed
include is required to compile a file, I added the required header (or
forward declaration if suggested by include-what-you-use).
This should reduce compilation time and reduce the number of iterative
recompilations when a header was changed.
llvm-svn: 357209
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
Differential Revision: https://reviews.llvm.org/D44978
llvm-svn: 332352
As part of this cleanup a couple of unnecessary isl::manage(obj.copy()) pattern
are eliminated as well.
We checked for all potential cleanups by scanning for:
"grep -R isl::manage\( lib/ | grep copy"
llvm-svn: 325558
Summary:
Most changes are mechanical, but in one place I changed the program semantics
by fixing a likely bug:
In `Scop::hasFeasibleRuntimeContext()`, I'm now explicitely handling the
error-case. Before, when the call to `addNonEmptyDomainConstraints()`
returned a null set, this (probably) accidentally worked because
isl_bool_error converts to true. I'm checking for nullptr now.
Reviewers: grosser, Meinersbur, bollu
Reviewed By: Meinersbur
Subscribers: nemanjai, kbarton, pollydev, llvm-commits
Differential Revision: https://reviews.llvm.org/D39971
llvm-svn: 318632
Since -polly-codegen reports itself to preserve DependenceInfo and IslAstInfo,
we might get those analysis that were computed by a different ScopInfo for a
different Scop structure. This would be unfortunate because DependenceInfo and
IslAstInfo hold references to resources allocated by
ScopInfo/ScopBuilder/Scop (e.g. isl_id). If -polly-codegen and
DependenceInfo/IslAstInfo do not agree on which Scop to use, unpredictable
things can happen.
When the ScopInfo/Scop object is freed, there is a high probability that the
new ScopInfo/Scop object will be created at the same heap position with the
same address. Comparing whether the Scop or ScopInfo address is the expected
therefore is unreliable.
Instead, we compare the address of the isl_ctx object. Both, DependenceInfo
and IslAstInfo must hold a reference to the isl_ctx object to ensure it is
not freed before the destruction of those analyses which might happen after
the destruction of the Scop/ScopInfo they refer to. Hence, the isl_ctx
will not be freed and its address not reused as long there is a
DependenceInfo or IslAstInfo around.
This fixes llvm.org/PR34441
llvm-svn: 313842
Fix walking over the schedule tree to collect its properties
(Number of permutable bands etc.).
Also add regression tests for these statistics.
llvm-svn: 313750
The remaining parts produced by the full partial tile isolation can contain
hot spots that are worth to be optimized. Currently, we rely on the simple
loop unrolling pass, LiCM and the SLP vectorizer to optimize such parts.
However, the approach can suffer from the lack of the information about
aliasing that Polly provides using additional alias metadata or/and the lack
of the information required by simple loop unrolling pass.
This patch is the first step to optimize the remaining parts. To do it, we
unroll and separate them. In case of, for instance, Intel Kaby Lake, it helps
to increase the performance of the generated code from 39.87 GFlop/s to
49.23 GFlop/s.
The next possible step is to avoid unrolling performed by Polly in case of
isolated and remaining parts and rely only on simple loop unrolling pass and
the Loop vectorizer.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D37692
llvm-svn: 312929
Properly require and preserve the OptimizationRemarkEmitter for use in
ScopPass. Previously one had to get the ORE from ScopDetection because
CodeGeneration did not mark it as preserved. It would need to be
recomputed which results in the legacy PM to throw away all previous
SCoP analysis.
This also changes the implementation of ScopPass::getAnalysisUsage to
not unconditionally preserve all passes, but only those needed to be
preserved by any SCoP pass (at least when using the legacy PM). This
allows invalidating DependenceInfo (and IslAstInfo) in case the pass
would cause them to change (e.g. OpTree, DeLICM, MaximalArrayExpansion)
JSONImporter should also invalidate the DependenceInfo. In this patch
it marks DependenceInfo as preserved anyway because some regression
tests depend on it.
Differential Revision: https://reviews.llvm.org/D37010
llvm-svn: 311888
Add statistics about
- Which optimizations are applied
- Number of loops in Scops at various stages
- Number of scalar/singleton writes at various stages representative
for scalar false dependencies
- Number of parallel loops
These will be useful to find regressions due to moving Polly further
down of LLVM's pass pipeline.
Differential Revision: https://reviews.llvm.org/D37049
llvm-svn: 311553
Currently, in case of GEMM and the pattern matching based optimizations, we
use only the SLP Vectorizer out of two LLVM vectorizers. Since the Loop
Vectorizer can get in the way of optimal code generation, we disable the Loop
Vectorizer for the innermost loop using mark nodes and emitting the
corresponding metadata.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D36928
llvm-svn: 311473
The pattern recognition for MatMul is restrictive.
The number of "disjuncts" in the isl_map containing constraint
information was previously required to be 1
(as per isl_*_coalesce - which should ideally produce a domain map with
a single disjunct, but does not under some circumstances).
This was changed and made more flexible.
Contributed-by: Annanay Agarwal <cs14btech11001@iith.ac.in>
Differential Revision: https://reviews.llvm.org/D36460
llvm-svn: 311302
Currently, only convex isolation sets can be efficiently processed by isl.
Consequently, as a temporary solution, we use a different algorithm for partial
tile isolation that helps to build convex isolation sets in some cases.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D36278
llvm-svn: 310374
In certain cases delicm might decide to not leave the original array write in
the loop body, but to remove it and instead leave a transformed phi node as
write access. This commit teached the matmul pattern detection to order the
memory accesses according to when the access actually happens and use this
information to detect the new pattern. This makes pattern based matmul
optimization work for 2mm and 3mm in polybench 4 after
polly-position=before-vectorizer has been enabled.
llvm-svn: 310338