The importer was previously using ModuleLinker in a sort of "IRMover mode". Use
IRMover directly instead in order to remove a level of indirection.
I will remove all importing support from ModuleLinker in a separate
change.
Differential Revision: https://reviews.llvm.org/D29468
llvm-svn: 294014
Summary:
I have a similar patch up for review already (D29173). If you prefer I
can squash them both together.
Also I think there more potential for code sharing between
LoopUnroll.cpp and LoopUnrollRuntime.cpp. Do you think patches for
that would be worthwhile?
Reviewers: mkuper, mzolotukhin
Reviewed By: mkuper, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29311
llvm-svn: 293758
Summary:
rL293124 added the necessary infrastructure to properly add the cloned
top level loop to LoopInfo, which means we do not have to do it manually
in CloneLoopBlocks.
@mkuper sorry for not pointing this out during my review of D29156, I just
realized that today.
Reviewers: mzolotukhin, chandlerc, mkuper
Reviewed By: mkuper
Subscribers: llvm-commits, mkuper
Differential Revision: https://reviews.llvm.org/D29173
llvm-svn: 293615
Summary: Along with https://reviews.llvm.org/D27804, debug locations need to be merged when hoisting store instructions as well. Not sure if just dropping debug locations would make more sense for this case, but as the branch instruction will have at least different discriminator with the hoisted store instruction, I think there will be no difference in practice.
Reviewers: aprantl, andreadb, danielcdh
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29062
llvm-svn: 293372
Summary: Extend the MemorySSAUpdater API to allow movement to arbitrary places
Reviewers: davide, george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29239
llvm-svn: 293363
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
insertUse, moveBefore and moveAfter operations.
Summary:
This creates a basic MemorySSA updater that handles arbitrary
insertion of uses and defs into MemorySSA, as well as arbitrary
movement around the CFG. It replaces the current splice API.
It can be made to handle arbitrary control flow changes.
Currently, it uses the same updater algorithm from D28934.
The main difference is because MemorySSA is single variable, we have
the complete def and use list, and don't need anyone to give it to us
as part of the API. We also have to rename stores below us in some
cases.
If we go that direction in that patch, i will merge all the updater
implementations (using an updater_traits or something to provide the
get* functions we use, called read*/write* in that patch).
Sadly, the current SSAUpdater algorithm is way too slow to use for
what we are doing here.
I have updated the tests we have to basically build memoryssa
incrementally using the updater api, and make sure it still comes out
the same.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29047
llvm-svn: 293356
Summary:
Some frontends emit a speculate-and-select idiom for sqrt, wherein they compute
sqrt(x), check if x is negative, and select NaN if it is:
%cmp = fcmp olt double %a, -0.000000e+00
%sqrt = call double @llvm.sqrt.f64(double %a)
%ret = select i1 %cmp, double 0x7FF8000000000000, double %sqrt
This is technically UB as the LangRef is written today if %a is ever less than
-0. But emitting code that's compliant with the current definition of sqrt
would require a branch, which would then prevent us from matching this idiom in
SelectionDAG (which we do today -- ISD::FSQRT has defined behavior on negative
inputs), because SelectionDAG looks at one BB at a time.
Nothing in LLVM takes advantage of this undefined behavior, as far as we can
tell, and the fact that llvm.sqrt has UB dates from its initial addition to the
LangRef.
Reviewers: arsenm, mehdi_amini, hfinkel
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D28797
llvm-svn: 293242
Even when we don't create a remainder loop (that is, when we unroll by 2), we
may duplicate nested loops into the remainder. This is complicated by the fact
the remainder may itself be either inserted into an outer loop, or at the top
level. In the latter case, we may need to create new top-level loops.
Differential Revision: https://reviews.llvm.org/D29156
llvm-svn: 293124
Summary:
This is the first in a series of patches to add a simple, generalized updater to MemorySSA.
For MemorySSA, every def is may-def, instead of the normal must-def.
(the best way to think of memoryssa is "everything is really one variable, with different versions of that variable at different points in the program).
This means when updating, we end up having to do a bunch of work to touch defs below and above us.
In order to support this quickly, i have ilist'd all the defs for each block. ilist supports tags, so this is quite easy. the only slightly messy part is that you can't have two iplists for the same type that differ only whether they have the ownership part enabled or not, because the traits are for the value type.
The verifiers have been updated to test that the def order is correct.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29046
llvm-svn: 293085
Conservatively disable sinking and merging inline-asm instructions as doing so
can potentially create arguments that cannot satisfy the inline-asm constraints.
For example, SimplifyCFG used to do the following transformation:
(before)
if.then:
%0 = call i32 asm "rorl $2, $0", "=&r,0,n"(i32 %r6, i32 8)
br label %if.end
if.else:
%1 = call i32 asm "rorl $2, $0", "=&r,0,n"(i32 %r6, i32 6)
br label %if.end
(after)
%.sink = select i1 %tobool, i32 6, i32 8
%0 = call i32 asm "rorl $2, $0", "=&r,0,n"(i32 %r6, i32 %.sink)
This would result in a crash in the backend since only immediate integer operands
are permitted for constraint "n".
rdar://problem/30110806
Differential Revision: https://reviews.llvm.org/D29111
llvm-svn: 293025
a lazy-asserting PoisoningVH.
AssertVH is fundamentally incompatible with cache-invalidation of
analysis results. The invaliadtion happens after the AssertingVH has
already fired. Instead, use a PoisoningVH that will assert if the
dangling handle is ever used rather than merely be assigned or
destroyed.
This patch also removes all of the (numerous) doomed attempts to work
around this fundamental incompatibility. It is a pretty significant
simplification IMO.
The most interesting change is in the Inliner where we still do some
clearing because we don't want to rely on the coarse grained
invalidation strategy of the containing pass manager. However, I prefer
the approach that contains this logic to the cleanup phase of the
Inliner, and I think we could enhance the CGSCC analysis management
layer to make this even better in the future if desired.
The rest is straight cleanup.
I've also added a test for one of the harder cases to work around: when
a *module analysis* contains many AssertingVHes pointing at functions.
Differential Revision: https://reviews.llvm.org/D29006
llvm-svn: 292928
With this change dominator tree remains in sync after each step of loop
peeling.
Differential Revision: https://reviews.llvm.org/D29029
llvm-svn: 292895
Running non-LCSSA-preserving LoopSimplify followed by LCSSA on (roughly) the
same loop is incorrect, since LoopSimplify may break LCSSA arbitrarily higher
in the loop nest. Instead, run LCSSA first, and then run LCSSA-preserving
LoopSimplify on the result.
This fixes PR31718.
Differential Revision: https://reviews.llvm.org/D29055
llvm-svn: 292854
Summary:
The LibFunc::Func enum holds enumerators named for libc functions.
Unfortunately, there are real situations, including libc implementations, where
function names are actually macros (musl uses "#define fopen64 fopen", for
example; any other transitively visible macro would have similar effects).
Strictly speaking, a conforming C++ Standard Library should provide any such
macros as functions instead (via <cstdio>). However, there are some "library"
functions which are not part of the standard, and thus not subject to this
rule (fopen64, for example). So, in order to be both portable and consistent,
the enum should not use the bare function names.
The old enum naming used a namespace LibFunc and an enum Func, with bare
enumerators. This patch changes LibFunc to be an enum with enumerators prefixed
with "LibFFunc_". (Unfortunately, a scoped enum is not sufficient to override
macros.)
There are additional changes required in clang.
Reviewers: rsmith
Subscribers: mehdi_amini, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28476
llvm-svn: 292848
the library routine shared with the new PM and other code.
This assert checks that when LCSSA preservation is requested we start in
LCSSA form. Without this early assert, given *very* complex test cases
we can hit an assert or crash much later on when trying to preserve
LCSSA.
The new PM's loop simplify doesn't need to (and indeed can't) preserve
LCSSA as the new PM doesn't deal in transforms in the dependency graph.
But we asked the library to and shockingly, this didn't work very well!
Stop doing that. Now the assert will tell us immediately with existing
test cases. Before this, it took a pretty convoluted input to trigger
this.
However, sinking the assert also found a bug in LoopUnroll where we
asked simplifyLoop to preserve LCSSA *right before we reform it*. That's
kinda silly and unsurprising that it wasn't available. =D Stop doing
that too.
We also would assert that the unrolled loop was in LCSSA even if
preserving LCSSA was never requested! I don't have a test case or
anything here. I spotted it by inspection and it seems quite obvious. No
logic change anyways, that's just avoiding a spurrious assert.
llvm-svn: 292710
This adds the following to the new PM based inliner in PGO mode:
* Use block frequency analysis to derive callsite's profile count and use
that to adjust thresholds of hot and cold callsites.
* Incrementally update the BFI of the caller after a callee gets inlined
into it. This incremental update is only within an invocation of the run
method - BFI is not preserved across calls to run.
Update the function entry count of the callee after inlining it into a
caller.
* I've tuned the thresholds for the hot and cold callsites using a hacked
up version of the old inliner that explicitly computes BFI on a set of
internal benchmarks and spec. Once the new PM based pipeline stabilizes
(IIRC Chandler mentioned there are known issues) I'll benchmark this
again and adjust the thresholds if required.
Inliner PGO support.
Differential revision: https://reviews.llvm.org/D28331
llvm-svn: 292666
Mostly straightforward changes; we just didn't do the computation before.
One sort of interesting change in LoopUnroll.cpp: we weren't handling
dominance for children of the loop latch correctly, but
foldBlockIntoPredecessor hid the problem for complete unrolling.
Currently punting on loop peeling; made some minor changes to isolate
that problem to LoopUnrollPeel.cpp.
Adds a flag -unroll-verify-domtree; it verifies the domtree immediately
after we finish updating it. This is on by default for +Asserts builds.
Differential Revision: https://reviews.llvm.org/D28073
llvm-svn: 292447
We currently check whether a reduction has a single outside user. We don't
really need to require that - we just need to make sure a single value is
used externally. The number of external users of that value shouldn't actually
matter.
Differential Revision: https://reviews.llvm.org/D28830
llvm-svn: 292424
Add missing fabs(fpext) optimzation that worked with the call,
and also fixes it creating a second fpext when there were multiple
uses.
llvm-svn: 292172
a function's CFG when that CFG is unchanged.
This allows transformation passes to simply claim they preserve the CFG
and analysis passes to check for the CFG being preserved to remove the
fanout of all analyses being listed in all passes.
I've gone through and removed or cleaned up as many of the comments
reminding us to do this as I could.
Differential Revision: https://reviews.llvm.org/D28627
llvm-svn: 292054
Summary:
This fixes Transforms/LoopUnroll/runtime-loop3.ll which failed with
EXTENSIVE_DEBUG, because the cloned basic blocks were not added to the
correct sub-loops in LoopUnrollRuntime.cpp.
Reviewers: dexonsmith, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28482
llvm-svn: 291619
Move the code to update LoopInfo for cloned basic blocks to
addClonedBlockToLoopInfo, as suggested in
https://reviews.llvm.org/D28482.
llvm-svn: 291614
Bail out instead of asserting when we encounter this situation,
which can actually happen.
The reason the test uses the new PM is that the "bad" phi, incidentally, gets
cleaned up by LoopSimplify. But LICM can create this kind of phi and preserve
loop simplify form, so the cleanup has no chance to run.
This fixes PR31190.
We may want to solve this in a less conservative manner, since this phi is
actually uniform within the inner loop (or we may want LICM to output a cleaner
promotion to begin with).
Differential Revision: https://reviews.llvm.org/D28490
llvm-svn: 291589
fabs(x * x) is not generally safe to assume x is positive if x is a NaN.
This is also less general than it could be, so this will be replaced
with a transformation on the intrinsic.
llvm-svn: 291359
Summary:
r285871 introduced an assert that was overly aggressive in the case
of a same-named local in different same-named files (in different
directories), where the source name and therefore the GUID ended up
the same because the files were compiled in their own directory without
any leading path. Change the handling in the promotion logic to get
the summary for the version in that module.
This also exposed an issue where we are not always importing the
right copy, which is a performance not correctness issue (because
the renaming is based on the module hash which must be different,
see the bug report for details). I will fix that as a follow-on.
Fixes PR31561.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28411
llvm-svn: 291304
Summary:
This adds a new summary flag NotEligibleToImport that subsumes
several existing flags (NoRename, HasInlineAsmMaybeReferencingInternal
and IsNotViableToInline). It also subsumes the checking of references
on the summary that was being done during the thin link by
eligibleForImport() for each candidate. It is much more efficient to
do that checking once during the per-module summary build and record
it in the summary.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28169
llvm-svn: 291108
This reapplies r289828 (reverted in r289833 as it broke the address sanitizer). The
debugloc is now only set when the instruction is not a call, as this causes the
verifier to assert (the inliner requires an inlinable callsite to have a debug loc
if the caller and callee have debug info).
Original commit message:
Simplify CFG will try to sink the last instruction in a series of basic blocks,
creating a "common" instruction in the successor block (sinkLastInstruction).
When it does this, the debug location of the single instruction should be the
merged debug locations of the commoned instructions.
Original review: https://reviews.llvm.org/D27590
llvm-svn: 290973
Summary:
Regardless how the loop body weight is distributed, we should preserve
total loop body weight. i.e. we should have same weight reaching the body of the loop
or its duplicates in peeled and unpeeled case.
Reviewers: mkuper, davidxl, anemet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28179
llvm-svn: 290833